题解 CF1042E 【Vasya and Magic Matrix】
Weng_Weijie · · 题解
题解:
不难得到转移方程
m 表示权值比 i 小的格子数量
然后将每个格子按权值排序,前缀和优化dp即可
注意要将平方项拆开,便于计算
代码:
#include <cstdio>
#include <algorithm>
#define N 1000005
int n, m, sumx, sumy, sump, dp[N], sumdp, x, y, tot;
struct point { int x, y, val; } p[N];
const int mod = 998244353;
void up(int &x, int y) { if ((x += y) >= mod) x -= mod; }
using LL = long long;
int pow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = static_cast<LL> (x) * x % mod)
if (y & 1) ans = static_cast<LL> (ans) * x % mod;
return ans;
}
int main() {
std::scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) std::scanf("%d", &p[++tot].val), p[tot].x = i, p[tot].y = j;
std::scanf("%d%d", &x, &y);
std::sort(p + 1, p + tot + 1, [] (point A, point B) { return A.val < B.val; });
for (int i = 1, l = 1; i <= tot; i++) {
dp[i] = 0;
if (p[i].val != p[l].val)
for (; l < i; l++) up(sumx, p[l].x), up(sumy, p[l].y), up(sump, p[l].x * p[l].x + p[l].y * p[l].y), up(sumdp, dp[l]);
int n = l - 1;
up(dp[i], static_cast<LL> (n) * (p[i].x * p[i].x + p[i].y * p[i].y) % mod);
up(dp[i], mod - 2 * (static_cast<LL> (p[i].x) * sumx % mod + static_cast<LL> (p[i].y) * sumy % mod) % mod);
up(dp[i], (sump + sumdp) % mod);
dp[i] = static_cast<LL> (dp[i]) * pow(n, mod - 2) % mod;
if (p[i].x == x && p[i].y == y) {
std::printf("%d\n", dp[i]);
return 0;
}
}
return 0;
}