题解 CF739E 【Gosha is hunting】

· · 题解

由于刚学带权二分,所以考虑带权二分
对于dp优化型题目,首先写出普通dp方程,f_{i,a,b}表示前i个宝可梦用a个精灵球和b个超级球期望能抓住几只

f_{i,a,b}=max(f_{i-1,a-1,b}+p_{i},f_{i-1,a,b-1}+q_{i},f_{i-1,a-1,b-1}+q_{i} * p_{i}-q_{i}*p_{i})

我们发现一只宝可梦用一只球会比两只球有性价比(毕竟还要减p[i]*q[i] (注意两只球若都抓住只贡献一次)))

所以当i,a固定时,关于b的函数f_{i,a,b}是上凸的,于是我们脑中就有了一个最优解图像: 然而这只是脑中的,我们要想办法根据他的性质把他还原出来
这里就有一个针对凸函数的办法:引一条直线使该直线与函数相切,这个函数也是由一小节一小节线段构成的(毕竟大家都是整数),当相切时实际上引的直线就是那一条线段比如:
而我们想要得到的是在正确函数上当x=b时的取值,所以我们不断调整斜率,因为该函数是凸函数,当截距最大时,我们得到的就是最优函数图像最右端的部分,我们口胡设一个函数

f'(x)=f(x)+kx

这就是我们拿来还原图像的直线(f'(x)为最优f_{n,a,x}),变形一下

f(x)=f'(x)-kx

这下我们表示出了截距,我们要想办法让截距最大
发现kx很像一个权值,所以我们让超级球的收益变为q[i]-k,然后贪心做就好,细节可以看代码(作死用了提前声明请见谅)

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define ld double
#define mid ((l+r)/2)
using namespace std;
ll n,a,b;
ld p[10001],q[10001],f[2010][2010],cnt[2101][2101];

bool check_dp(ld sam);

int main(){
    scanf("%lld%lld%lld",&n,&a,&b);
    for(ll i=1;i<=n;i++)scanf("%lf",&p[i]);
    for(ll i=1;i<=n;i++)scanf("%lf",&q[i]);
    ld l=0,r=1,ans=1;
    for(ll o=1;o<=60;o++){
        if(check_dp(mid))ans=mid,r=mid-1;
        else l=mid+1;
    }
    ans=f[n][a]+ans*b;
    printf("%.5lf\n",ans);
}

bool check_dp(ld sam){
    memset(f,0,sizeof f);
    memset(cnt,0,sizeof cnt);
    ll i,j;
    for(i=1;i<=n;i++){
        for(j=0;j<=a;j++){
            cnt[i][j]=cnt[i-1][j];
            f[i][j]=f[i-1][j];
            if(j!=0&&f[i-1][j-1]+p[i]>f[i][j]){
                cnt[i][j]=cnt[i-1][j-1];
                f[i][j]=p[i]+f[i-1][j-1];
            }
            if(f[i-1][j]+q[i]-sam>f[i][j]){
                cnt[i][j]=cnt[i-1][j]+1;
                f[i][j]=f[i-1][j]+q[i]-sam;
            }
            if(j!=0&&f[i-1][j-1]+p[i]+q[i]-q[i]*p[i]-sam>f[i][j]){
                cnt[i][j]=cnt[i-1][j-1]+1;
                f[i][j]=f[i-1][j-1]+p[i]+q[i]-q[i]*p[i]-sam;
            }
        }
    }
    return cnt[n][a]<=b;
}