2012年国家集训队: 和与积
Delta_Cosh
·
·
题解
As\ we\ know\ that:
(a+b)|ab;
So\ it\ is\ easy\ to\ think\ of\ it:
d=gcd(a,b);
Assume:
a=xd,b=yd;
Then\ there\ goes:
\frac{xyd}{x+y}\ is\ a\ integer;
Obviously\ there\ is
gcd(x,y)=1;
∴gcd(x,x+y)=1,gcd(y,x+y)=1,gcd(xy,x+y)=1;
∴(x+y)|d;
From\ the\ condition.1\ we\ know
\left\{\begin{aligned}xd\leqslant{N}\\ yd\leqslant{N} \\ x+y\leqslant{d}\end{aligned}\right.;
And\ there\ is
d\leqslant{\lfloor{\frac{N}{y}}\rfloor};
So\ the\ answer\ equals
ans=\sum_{x=1}^{\sqrt{N}}\sum_{y=x+1}^{\sqrt{N}}\lfloor{\frac{\lfloor{\frac{N}{y}}\rfloor}{x+y}}\rfloor\ [gcd(x,y)=1];
Use\ Möbius\ inversion\ formula\ and\ make:
xd=x,yd=y;
∴ans=\sum_{d=1}^{\sqrt{N}}\mu(d)\sum_{x=1}^{\frac{\sqrt{N}}{d}}\sum_{y=x+1}^{\frac{\sqrt{N}}{d}}\lfloor{\frac{\lfloor{\frac{N}{yd^2}}\rfloor}{x+y}}\rfloor ;
s=x+y;
∴ans=\sum_{d=1}^{\sqrt{N}}\mu(d)\sum_{y=2}^{\frac{\sqrt{N}}{d}}\sum_{s=y+1}^{2y-1}\lfloor{\frac{\lfloor{\frac{N}{yd^2}}\rfloor}{s}}\rfloor ;
By\ the\ identity\ we\ know\ the\ answer.
代码就不给了已经讲的很清楚了。