题解 P1077 【摆花】

· · 题解

摆花解题报告

这是一篇长达三年的解题报告。

update on 2020.10.21:

增加了前缀和优化

update on 2021.03.18:

增加了生成函数做法,修改了部分内容,更正了部分谬误。

update on 2021.07.30:

增加了生成函数(封闭形式)的做法,更正了部分谬误。

(〇)数学符号注释

本文中的某些符号体系并不标准,一些读者会在其他书中学习类似的内容。这里列出了他们可能不熟悉的符号。

符号 名称 等价形式
\sum\limits_{i=1}^na_i 求和(和式) a_1+a_2+\cdots+a_{n-1}+a_n
\prod\limits_{i=1}^na_i 求积 a_1\times a_2\times\cdots\times a_{n-1}\times a_n
[m=n] 如果m=n值为1;否则为0 \begin{cases}1&m=n\\ 0& m\not=n\end{cases}

(一)题目大意

题目传送门

简化一下题意:

n 个数(c_1,c_2,...,c_n), 0\leqslant c_i\leqslant a_i,求有多少种方案数使\sum\limits_{i=1}^nc_i = m

(二)解题思路

乍一看,似乎题目有些复杂,一时找不到思路,肿么办!!!

方法一:搜索

没有思路当然就搜索啦 废话。如何搜索呢?

从 1 到 n​ 考虑每个 c_i​ 的值,和当前前 i​ 个数的总和 k​,然后枚举当前 x_i​ 所有可能的值,再递归求解。

时间复杂度 O(\prod\limits_{i=1}^na_i),明显超时,但可以拿部分分(30)嘛...

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

搜索超时怎么办!!! 别着急...

方法二(搜索优化法宝):记忆化

所谓记忆化,其实就是用一个数组将搜索过的值存起来,避免重复搜索,从而提高效率。(有必要可以上网搜一下,会搜索的应该很容易理解记忆化吧)

时间复杂度大概是:O(nma_i) 吧,100%的数据稳过。

代码(其实只是改动了一点点):

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], rmb[maxn][maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    if(rmb[x][k]) return rmb[x][k]; //搜过了就返回
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    rmb[x][k] = ans; //记录当前状态的结果
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

但是搜索的时间有些不稳定,想要更稳定的算法有木有...

方法三:动态规划

记忆化搜索都可以转成动态规划,但是动态规划却不一定能转成记忆化搜索 ——by clg

定义状态:f(i, j) 表示前 i 个数总和为 j 的方案数。

那么,易得状态转移方程:f(i, j) = \sum\limits_{k=0}^{a_{i}}f(i-1,j-k)

其中, k是枚举当前第 i 个数的取值。

时间复杂度:O(nma_i),稳得一批。

空间复杂度:O(nm)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[maxn][maxn];
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0][0] = 1;
    for(int i=1; i<=n; i++)
       for(int j=0; j<=m; j++)
           for(int k=0; k<=min(j, a[i]); k++)
              f[i][j] = (f[i][j] + f[i-1][j-k])%mod;
    cout<<f[n][m]<<endl;
    return 0;
}

仔细观察上述代码,有木有发现什么...

方法四(dp优化法宝):滚动数组

因为我们发现,状态转移方程中,当前状态 f(i, j)只跟 f(i-1, j) 有关系,与 i-2,i-3...无关。于是,我们可以利用滚动数组优化dp。

所谓滚动数组,其实就是只保留两个状态(当前状态和前一个状态),算完当前状态后,将当前状态变为前一个状态,再去算下一个状态,看上去就像二维数组的两层不断地迭代

时间复杂度:O(nma_i)

空间复杂度:O(m)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[2][maxn], t;
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0][0] = 1;
    for(int i=1; i<=n; i++)
    {
        t = 1-t; //滚动
        for(int j=0; j<=m; j++)
        {
            f[t][j] = 0; //注意初始化
            for(int k=0; k<=min(j, a[i]); k++)
              f[t][j] = (f[t][j] + f[1-t][j-k])%mod;
        }
    }
    cout<<f[t][m]<<endl;
    return 0;
}

看到上述dp代码,有木有感觉很熟悉...

这熟悉的优化方法... 这TM不就是个背包吗!!!

方法五(背包大法好):一维动态规划

通过观察上面的代码,二维数组,数组滚动优化空间......还有那熟悉的格式...

猛然发现这怎么可能不是背包呢(01背包)?

既然是背包,那么就可以为所欲为啦... [邪恶.jpg]

直接压成一维的01背包,跑一波,搞掂!!!

时间复杂度:O(nma_i)

空间复杂度:O(m)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[maxn];
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0] = 1;
    for(int i=1; i<=n; i++)
        for(int j=m; j>=0; j--) //注意,是01背包
            for(int k=1; k<=min(a[i], j); k++)
              f[j] = (f[j] + f[j-k])%mod;
    cout<<f[m]<<endl;
    return 0;
}

方法六:前缀和优化

继续观察方法五的代码,时间复杂度是\Theta(n^3)级别的。与背包有一些差别的是这一句:

for(int k=1; k<=min(a[i], j); k++)
    f[j] = (f[j] + f[j-k])%mod;

然而,这一句的作用只不过是将连续的一段f[j-a[i]]f[j-1]累加起来而已。因此,可以用前缀和将这个操作优化(众所周知,前缀和的作用就是\Theta(1)求一段区间的和)。

时间复杂度:\Theta(nm)

顺便卡到了次优解。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 105, mod = 1000007;
int n, m, f[maxn], sum[maxn], a[maxn];
int main(){
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0] = 1;
    for(int i=0; i<=m; i++) sum[i] = 1;
    for(int i=1; i<=n; i++){
        for(int j=m; j>=1; j--) f[j] = (f[j] + sum[j-1] - sum[j - min(a[i], j) - 1] + mod)%mod;
        for(int j=1; j<=m; j++) sum[j] = (sum[j-1] + f[j])%mod;
    }
    cout<<f[m]<<endl;
    return 0;
}

提示:上面的程序在计算f[j]的时候有可能会出现数组越界的情况,但为了代码美观容易理解,没有特判。这一点需要注意,考场上不慎就会抱灵。

下面是加上了特判的代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 105, mod = 1000007;
int n, m, f[maxn], sum[maxn], a[maxn];
int main(){
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0] = 1;
    for(int i=0; i<=m; i++) sum[i] = 1;
    for(int i=1; i<=n; i++){
        for(int j=m; j>=1; j--){
            int t = j - min(a[i], j) - 1;
            if(t < 0) f[j] = (f[j] + sum[j-1])%mod;
            else f[j] = (f[j] + sum[j-1] - sum[t] + mod)%mod;
        }
        for(int j=1; j<=m; j++) sum[j] = (sum[j-1] + f[j])%mod;
    }
    cout<<f[m]<<endl;
    return 0;
}

方法七:生成函数

建议初学者跳过此方法,权当提供一种思路。

回到开头,我们需要求的是这样一个式子:

\sum\limits_{c_k=0}^{a_k}\left[\sum\limits_{i=1}^nc_i=m\right ] ,k=\{1,2,...,n-1,n\}

于是我们可以构造这样一个生成函数:

g(x)=(1+x^1+x^2+\cdots+x^{a_1})(1+x^1+x^2+\cdots+x^{a_2})\cdots(1+x^1+x^2+\cdots+x^{a_n})

即,

g(x)=\prod\limits_{i=1}^n\sum_{j=0}^{a_i}x^j

7.1多项式

最后所得的多项式中,x^m 项的系数即为答案。可以做n​次NTT得到答案。假设a_i 的值域是k ,那么,

时间复杂度:\Theta(n^2k\log nk)

实际上,m最大可以取到nk。因此如果用k来表示,前缀和优化后的复杂度应当是:\Theta(n^2k)

NTT的局限在于要做n次。其实只需要取\ln就能将多项乘法转化为多项式加法,具体参考付公主的背包。

时间复杂度降到了\Theta(nk\log nk)​,即 \Theta(m\log m)

7.2封闭形式

也可以将其写成封闭形式,参考[CEOI2004] Sweets。

等比数列求和,得到:

g(x)=\dfrac{\prod_{i=1}^n(1-x^{a_i})}{(1-x)^n}

n 较小,m 很大的时候,可以考虑将 \prod_{i=1}^n(1-x^{a_i})​ 暴力展开,对于 (1-x)^{-n} 使用牛顿二项式定理。即,

(1-x)^{-n}=\sum_{i\ge0}\binom {n+i-1}{i}x^i

枚举前一个式子 x 的幂次,假设为 k,设 x^k 项的系数为 c_k,那么,

{\rm {ANS}}=\sum _{k=0}^m c_k\cdot\binom {n+m-k-1}{m-k}

时间复杂度:\Theta(2^n+m)

(三)总结

总的来说,这道题适合 搜索/动态规划 的初学者练习。

有一点点的思维难度。

这道题的价值在于,它既可以从简单的动态规划开始,一路优化,也可以从生成函数的视角观察,继续优化。这两条道路,竟是殊途同归。或许,这也是数学的魅力吧。