【HNOI2015】开店
题目描述
题目大意:给定一颗
分析
首先考虑一个简化的版本,询问所有点到点
展开可得:
其中
于是原式变为
现在观察
直接相减出现的
原式
将原式中的
注意到
可以进行维护
现在考虑如何加入
每次加入一个点的时候,树的形态不发生变化,
思路总结
对主席树的认识不要僵化,体会其有关版本的作用。例如对于区间
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <bits/stdc++.h>
#define MAXN 200050
#define ri register int
#define il inline
using namespace std;
typedef long long LL;
int n, q, A, ecnt, numcnt, root[MAXN], rtcnt, num[MAXN];
int tcnt, top[MAXN], id[MAXN], fa[MAXN], fv[MAXN], son[MAXN], size[MAXN];
LL lastans, dsum[MAXN], dep[MAXN];
struct Node {
int id, ag;
bool operator < (const Node &x) const {
if(ag == x.ag) return id < x.id;
return ag < x.ag;
}
}mon[MAXN];
struct node {
int v, w;
node *next;
}pool[MAXN<<2], *h[MAXN];
struct NODE {
int ls, rs, lazy;
LL sum, esum;
void init() {
ls = rs = lazy = 0, esum = sum = 0;
}
}t[MAXN<<7];
il void adde(int u, int v, int w) {
node *p = &pool[ecnt++], *q = &pool[ecnt++];
*p = node {v, w, h[u]}, h[u] = p;
*q = node {u, w, h[v]}, h[v] = q;
}
void dfs1(int u) {
size[u] = 1;
for(node *p = h[u]; p; p = p->next) {
if(p->v == fa[u]) continue;
dep[p->v] = dep[u]+p->w, fa[p->v] = u, fv[p->v] = p->w, dfs1(p->v), size[u] += size[p->v];
if(size[p->v] > size[son[u]]) son[u] = p->v;
}
}
void dfs2(int u, int t) {
id[u] = ++tcnt, top[u] = t, num[tcnt] = fv[u];
if(!son[u]) return ;
dfs2(son[u], t);
for(node *p = h[u]; p; p = p->next)
if(!id[p->v]) dfs2(p->v, p->v);
}
void build(int &u, int l, int r) {
int tmp = u; u = ++rtcnt, t[u] = t[tmp];
if(l == r) return (void)(t[u].esum = num[l]);
int mid = (l+r)>>1;
build(t[u].ls, l, mid);
build(t[u].rs, mid+1, r);
t[u].esum = t[t[u].ls].esum + t[t[u].rs].esum;
}
void change(int &u, int l, int r, int tl, int tr) {
int tmp = u; u = ++rtcnt, t[u] = t[tmp];
if(tl <= l && r <= tr) {
++t[u].lazy;
t[u].sum += t[u].esum;
return ;
}
int mid = (l+r)>>1;
if(tl <= mid) change(t[u].ls, l, mid, tl, tr);
if(mid < tr) change(t[u].rs, mid+1, r, tl, tr);
t[u].sum = t[t[u].ls].sum + t[t[u].rs].sum + t[u].esum*t[u].lazy;
}
void Change(int u, int ver) {
while(top[u] != 1) {
change(root[ver], 1, n, id[top[u]], id[u]);
u = fa[top[u]];
}
change(root[ver], 1, n, 1, id[u]);
}
LL query(int u, int l, int r, int tl, int tr, int add) {
if(tl <= l && r <= tr) return t[u].sum + t[u].esum*add;
int mid = (l+r)>>1; LL ret = 0;
add += t[u].lazy;
if(tl <= mid) ret += query(t[u].ls, l, mid, tl, tr, add);
if(mid < tr) ret += query(t[u].rs, mid+1, r, tl, tr, add);
return ret;
}
LL Query(int u, int ver) {
LL ret = 0;
while(top[u] != 1) {
ret += query(root[ver], 1, n, id[top[u]], id[u], 0);
u = fa[top[u]];
}
ret += query(root[ver], 1, n, 1, id[u], 0);
return ret;
}
il LL calc(int u, int ver) {
return dsum[ver] + ver*dep[u] - 2*Query(u, ver);
}
int main() {
int u, v, c;
scanf("%d%d%d", &n, &q, &A);
for(ri i = 1; i <= n; ++i) scanf("%d", &mon[i].ag), mon[i].id = i;
for(ri i = 1; i < n; ++i) scanf("%d%d%d", &u, &v, &c), adde(u, v, c);
dfs1(1), dfs2(1, 1);
sort(mon+1, mon+n+1);
build(root[0], 1, n);
for(ri i = 1; i <= n; ++i)
dsum[i] = dsum[i-1] + dep[mon[i].id],
root[i] = root[i-1], Change(mon[i].id, i);
while(q--) {
LL l, r; int L, R;
scanf("%d%lld%lld", &u, &l, &r);
l += lastans, r += lastans;
L = min(l%A, r%A), R = max(l%A, r%A);
L = lower_bound(mon+1, mon+n+1, Node{0, L})-mon, R = upper_bound(mon+1, mon+n+1, Node{MAXN, R})-mon-1;
printf("%lld\n", lastans = calc(u, R)-calc(u, L-1));
}
return 0;
}