题解 P3455 【[POI2007]ZAP-Queries】

· · 题解

我顺便来安利一下自己的博客peng-ym's blog里面也有莫比乌斯反演与整除分块的介绍,不知道的可以看一看哦!

题目大意

解题思路

#include<bits/stdc++.h>
#define N 60010
using namespace std;
inline void read(long long &x)
{
    x=0;
    static long long p;p=1;
    static char c;c=getchar();
    while(!isdigit(c)){if(c=='-')p=-1;c=getchar();}
    while(isdigit(c)) {x=(x<<1)+(x<<3)+(c-48);c=getchar();}
    x*=p;   
}
bool vis[N];
long long prim[N],mu[N],sum[N],cnt;
void get_mu(long long n)
{
    mu[1]=1;
    for(long long i=2;i<=n;i++)
    {
        if(!vis[i]){mu[i]=-1;prim[++cnt]=i;}
        for(long long j=1;j<=cnt&&i*prim[j]<=n;j++)
        {
            vis[i*prim[j]]=1;
            if(i%prim[j]==0)break;
            else mu[i*prim[j]]=-mu[i];
        }
    }
    for(long long i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
}
int main()
{
//  freopen("P3455.in","r",stdin);
//  freopen("P3455.out","w",stdout);
    long long t;
    read(t);
    get_mu(50000);
    while(t--)
    {
        static long long a,b,d;
        read(a);read(b);read(d);
        static long long max_rep,ans;
        max_rep=min(a,b);ans=0;
        for(long long l=1,r;l<=max_rep;l=r+1)
        {
            r=min(a/(a/l),b/(b/l));
            ans+=(a/(l*d))*(b/(l*d))*(sum[r]-sum[l-1]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}