题解 P1912 【[NOI2009]诗人小G】

· · 题解

第一次写这种二分来优化决策单调性的问题。。。。 调了好久,,,各种细节问题

显然有DP方程:

f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1)));

其中f[i]代表到了第i个句子的最小答案

qpow用于处理^p

sum为前缀和

(同时为了处理句子之间的空格问题,我们在统计前缀和的时候就默认在句子后面加一个空格,

然后在计算的时候,由于每一行只有最后一个不用加空格,直接减掉这个多加的空格即可获得正确长度)

首先我们可以打表发现是满足决策单调性的,

即决策是一段一段的

比如这种:

11122224446666

但下面这两种则不满足决策单调性:

11144442222666

11112424

同时这样的决策单调性是很特殊的,即一开始可能是这样的

11111111111111

加入2后:

11122222222222

加入4后:

11122224444444

也就是说就算最终取值是11122224446666,

在中间不断插入的过程中,也是一整段的

因此满足可二分性,

所以我们可以二分来找每个决策管理的区间(即可以转移到的区间)

但是有如下细节需要注意:

1,区间可能被完整覆盖

举个栗子,

如果当前状态是

111111111111114

现在加入一个5,那么下一个状态完全有可能是:

111111155555555

因此为了处理这样的情况,我们在二分之前先将会被完整覆盖的区间pop掉

即在插入5前弹出4,

同时这里又要注意,这个pop的处理必须在二分之前,

因为在二分过程中,我们需要一个决策来起到check的作用,而这个决策应该是当前插入的x最后应该被放入的那个区间的决策。

这样说可能不太清楚,还是举个栗子

比如当前状态:

111111112222223333

假设下一个状态是

111111112224444444

那么我们二分过程中作为判断依据的那决策就应该是2,

why?

因为观察到3号决策已经被完整的覆盖了,那么我们要对3之前的状态进行check的时候,由于3号不够优(也有可能是受到只能向后转移的限制),我们不能使用3号来check,

但是直接使用2号决策来check,然后在后面2222223333中二分也是不妥的,

因为在3333时,2号并不是最优,

所以为了应对这种情况,

我们先直接判断3333中的第一个3所对应的DP状态,如果插入的x更加优,

那么就代表这个区间是可以被完整的覆盖的,因此我们pop掉这个区间,

依次pop直到不满足条件为止,

这个时候我们就只需要在222222中二分了,于是用2号决策来check就很顺理成章了

2,新插入的x可能什么区间都覆盖不了,

也就是说新插入的x可能并不能更新状态,于是我们在二分前做一次特判,

判断当前区间的最后一个是否可以被覆盖,

如果不能,那么这个x无法更新状态,

所以直接continue

---------------以上为计算答案过程--------------

----------------以下为输出部分----------------

因为要输出方案,因此我们在转移时用last数组来记录i是从哪个决策转移而来

又因为不能打乱顺序,所以我们用Next数组来反向记录last数组

比如last中记录的可能是

0 <--- 2 <--- 4

即4由2转移而来,2由转移0而来

那么我们Next数组中记录的就是

0 ---> 2 ---> 4

所以我们从1开始输出,

每当我们到达Next[now]时就输出换行

即输出

1 2

3 4

其实也就是相当于存下了每一行是由哪一句话结尾的,

然后依次输出

最后注意ans可能很大,而且要与1e18比较,所以long long 不够用。

要用 long double

下面是代码(中间有调试输出)

#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 100100
#define LL long long
#define LD long double
#define ACway 101000
#define inf 1000000000000000000LL
int t,L,p,n;
int s[AC],last[AC],l[AC],r[AC];//对应决策的管理区间
int q[AC],head,tail;//存下当前是哪个决策
int Next[AC];//对last进行相反操作,以便输出
LD f[AC];
LL sum[AC];
char ss[ACway][45];
//bool flag;
/*为什么我感觉就是一个普通DP+决策单调性 ---> 二分,,,,这个不比斜率优化容易理解么?*/
inline LD qpow(LD x)//error!!!x也要用LD!!!
{
    LD ans=1;
//  printf("x : %lld\n",(LL)(x + 0.5));
    int have=p;
    while(have)
    {
        if(have & 1) ans*=x;
        x*=x;
        have>>=1;
    //  if(ans > inf || x > inf) flag=true; 
    }
//  printf("ans : %lld\n",(LL)(ans + 0.5));
    return ans;
}

inline void pre()
{
    scanf("%d%d%d",&n,&L,&p);
    for(R i=1;i<=n;i++)
    {
        scanf("%s",ss[i]+1);
        s[i]=strlen(ss[i]+1) + 1;//加上后面的空格
        sum[i]=sum[i-1] + s[i];//求出前缀和
    }   
}

inline LD count(int x,int j)//j --- > x
{
    return f[j] + qpow(abs(sum[x] - sum[j] - L - 1));
}

void half(int x)//二分查找
{
    int now=q[tail],ll=l[now],rr=n,mid;//因为可能可以覆盖多个区间
    while(ll < rr)
    {
        mid=(ll + rr) >> 1;
        if(count(mid,x) < count(mid,now)) rr=mid;//如果更优就往左缩短
        else ll=mid + 1;//不然就向右寻找
    }
//  while(l[q[tail]] >= ll) --tail;//去掉整个都被包含的区间
    r[q[tail]]=ll-1;
    q[++tail]=x,l[x]=ll,r[x]=n;
    /*for(R i=head;i<=tail;i++)
    {
        for(R j=l[q[i]];j<=r[q[i]];j++)
            printf("%d",q[i]);
    }
    cout << endl;*/
}

inline void getans()
{
    head=1,tail=1;
    q[1]=0,l[0]=1,r[0]=n;
    for(R i=1;i<=n;i++)
    {
        while(r[q[head]] < i) ++head;//如果当前队首已经取不到了
        int now=q[head];
        //f[i]=f[now] + qpow(abs(sum[i] - sum[now] - L - 1));
        f[i]=count(i,now);//error ??? 用函数的话会爆了会自动转换为inf?
        //error!!!是后者转移到前者,所以是now ---> i,要填count(i,now),而不是count(now,i);
    //  printf("???%d\n",now);
        last[i]=now;
        if(count(n,q[tail]) < count(n,i)) continue;//如果最后一个都不够优,那就不二分了
        while(count(l[q[tail]],q[tail]) > count(l[q[tail]],i)) --tail;//如果当前可以覆盖前面的整个区间
        half(i);//注意上面的while要在调用half之前修改,这样取到的now才是正确的
    }
}

inline void write()
{
    //if(f[n] > inf || flag) puts("Too hard to arrange");
    if(f[n] > inf) puts("Too hard to arrange");
    else
    {
        printf("%lld\n",(LL)(f[n] + 0.5));//注意精度误差
        for(R i=n ; i ; i=last[i])  Next[last[i]]=i;
        int now=0;
        for(R i=1;i<=n;i++)
        {
            now=Next[now];//now先跳了吧
            int be=now;//先只到这行结尾,因为for还要加的
            for(R j=i; j < be ;j++) printf("%s ",ss[j] + 1);
            printf("%s\n",ss[be] + 1);
            i=be;//最后再赋i,因为for中还要用到当前i
        }
    }
    puts("--------------------");
}

inline void check()
{
    for(R i=1;i<=n;i++)
    {
        if(r[i] > l[i]) 
            for(R j=l[i];j<=r[i];j++) printf("%d",i);
    }
    printf("\n");
    for(R i=1;i<=n;i++) printf("!!!%lld\n",(LL)(f[i] + 0.5));
    cout << endl << endl;
}

inline void work()
{
    while(t--)
    {
        //flag=false;
        pre();
        getans();
    //  check();
        write();
    }
}

int main()
{
    freopen("in.in","r",stdin);
    scanf("%d",&t);
    work();
    fclose(stdin);
    return 0;
}