题解 P5110 【块速递推】
这里给出一种使用特征方程解此题的方法
Warning: 大波公式警告
则:
就可以了。
复杂度
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
namespace Maker
{
unsigned long long SA, SB, SC;
void init() { scanf("%llu%llu%llu", &SA, &SB, &SC); }
inline unsigned long long rand()
{
SA ^= SA << 32, SA ^= SA >> 13, SA ^= SA << 1;
unsigned long long t = SA;
SA = SB, SB = SC, SC ^= t ^ SA;
return SC;
}
}
const int Mod(1e9 + 7), alpha(233230706), x_1(94153035),
x_2(905847205), x_3(64353223), x_4(847809841);
const int maxn(65536 + 5);
int f_1[maxn], f_2[maxn], f_3[maxn], f_4[maxn], T, ans;
inline int Pow_1(int x) { return 1ll * f_3[x >> 16] * f_1[x & 65535] % Mod; }
inline int Pow_2(int x) { return 1ll * f_4[x >> 16] * f_2[x & 65535] % Mod; }
int main()
{
f_1[0] = f_2[0] = f_3[0] = f_4[0] = 1;
for(RG int i = 1; i < 65536; i++) f_1[i] = 1ll * f_1[i - 1] * x_1 % Mod;
for(RG int i = 1; i < 65536; i++) f_2[i] = 1ll * f_2[i - 1] * x_2 % Mod;
for(RG int i = 1; i < 65536; i++) f_3[i] = 1ll * f_3[i - 1] * x_3 % Mod;
for(RG int i = 1; i < 65536; i++) f_4[i] = 1ll * f_4[i - 1] * x_4 % Mod;
scanf("%d", &T); Maker::init(); unsigned long long n;
while(T--) n = Maker::rand() % (Mod - 1),
ans ^= 1ll * alpha * (Pow_1(n) - Pow_2(n) + Mod) % Mod;
printf("%d\n", ans);
return 0;
}