[ABC267Ex] Odd Sum
题意翻译
- 有一个长度为 $n$ 的数列 $A$,求出选出奇数个元素和为 $m$ 的方案数
- $n\le 10^5,m\le 10^6,a_i\le 10$
题目描述
[problemUrl]: https://atcoder.jp/contests/abc267/tasks/abc267_h
長さ $ N $ の整数列 $ A=(A_1,A_2,\dots,A_N) $ が与えられます。
$ A $ から要素を奇数個選ぶ方法のうち、選んだ要素の総和が $ M $ になるものの個数を $ 998244353 $ で割ったあまりを求めてください。
ただし、$ 2 $ つの選び方が異なるとは、ある整数 $ i\ (1\ \le\ i\ \le\ N) $ が存在して、一方の選び方では $ A_i $ を選び、もう一方では選んでいないことを言います。
输入输出格式
输入格式
入力は以下の形式で標準入力から与えられる。
> $ N $ $ M $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
输出格式
答えを出力せよ。
输入输出样例
输入样例 #1
5 6
1 2 3 3 6
输出样例 #1
3
输入样例 #2
10 23
1 2 3 4 5 6 7 8 9 10
输出样例 #2
18
说明
### 制約
- $ 1\ \le\ N\ \le\ 10^5 $
- $ 1\ \le\ M\ \le\ 10^6 $
- $ 1\ \le\ A_i\ \le\ 10 $
- 入力は全て整数。
### Sample Explanation 1
条件を満たす選び方は以下の $ 3 $ 通りです。 - $ A_1,A_2,A_3 $ を選ぶ。 - $ A_1,A_2,A_4 $ を選ぶ。 - $ A_5 $ を選ぶ。 $ A_3,A_4 $ を選んだ場合、総和は $ 6 $ ですが選んだ要素の個数が奇数個でないため条件を満たしません。