[AGC024D] Isomorphism Freak
题意翻译
给定一棵点数为 $n$ 的无根树. 对于两个点 $u,v$, 若有以 $u$ 为根与以 $v$ 为根树同构, 则染上同一种颜色.
可以给这棵树加若干点, 问加完点后树最少能有多少种颜色, 以及在最少颜色的情况下最少有多少个叶子节点.
题目描述
[problemUrl]: https://atcoder.jp/contests/agc024/tasks/agc024_d
木 $ G $ の頂点を何色かで塗り分ける方法が *良い彩色* であるとは、同じ色で塗られたどの $ 2 $ つの頂点 $ u,v $ に対しても、 $ G $ を $ u $ を根とする根付き木として見た木と $ v $ を根とする根付き木として見た木が同型であることを指します。
また、$ G $ の *カラフルさ* とは、$ G $ の良い彩色で使われる色の種類数の最小値を指します。
$ N $ 頂点の木が与えられます。頂点には $ 1 $ から $ N $ までの番号がついており、$ i $ 本目の辺は頂点 $ a_i $ と頂点 $ b_i $ を結んでいます。 この木に以下の操作を何度か繰り返し施し、木 $ T $ を作ります。
- 新たな頂点を $ 1 $ つ作る。現在の木の頂点をひとつ選び、その頂点と新しく作った頂点を辺で結ぶ。
$ T $ としてありうるもののカラフルさの最小値を求めてください。 さらに、その最小値を達成する木 $ T $ の葉(次数 $ 1 $ の頂点)の数の最小値を出力してください。
输入输出格式
输入格式
入力は以下の形式で標準入力から与えられる。
> $ N $ $ a_1 $ $ b_1 $ : $ a_{N-1} $ $ b_{N-1} $
输出格式
整数 $ 2 $ つを空白区切りで出力せよ。 まずはじめに、作ることのできる木 $ T $ の中での、カラフルさの最小値を出力せよ。 その後、その時の木の葉の数の最小値を出力せよ。
なお、この問題の制約の下で、出力すべき値は $ 64 $ ビット符号付き整数に収まることが示せる。
输入输出样例
输入样例 #1
5
1 2
2 3
3 4
3 5
输出样例 #1
2 4
输入样例 #2
8
1 2
2 3
4 3
5 4
6 7
6 8
3 6
输出样例 #2
3 4
输入样例 #3
10
1 2
2 3
3 4
4 5
5 6
6 7
3 8
5 9
3 10
输出样例 #3
4 6
输入样例 #4
13
5 6
6 4
2 8
4 7
8 9
3 2
10 4
11 10
2 4
13 10
1 8
12 1
输出样例 #4
4 12
说明
### ノート
$ G $ を $ u $ を根とする根付き木として見た木と $ v $ を根とする根付き木として見た木が同型であるとは、 $ G $ の頂点集合からそれ自身への全単射な写像 $ f_{uv} $ であって、以下を満たすものが存在することを指します。
- $ f_{uv}(u)=v $
- どの $ 2 $ 頂点の組 $ (a,b) $ についても、$ (a,b) $ 辺があることと $ (f_{uv}(a),f_{uv}(b)) $ 辺があることが同値である
### 制約
- $ 2\ \leq\ N\ \leq\ 100 $
- $ 1\ \leq\ a_i,b_i\ \leq\ N(1\leq\ i\leq\ N-1) $
- 与えられるグラフは木である
### Sample Explanation 1
頂点 $ 6 $ を用意し、頂点 $ 2 $ と結んだとき、頂点 $ (1,4,5,6) $ を赤で、頂点 $ (2,3) $ を青で塗る彩色は良い彩色です。 $ 1 $ 色で全頂点を塗る彩色は良い彩色ではないので、作った木のカラフルさは $ 2 $ となることが分かります。 この場合が最適であり、葉は $ 4 $ つあるので、$ 2 $ と $ 4 $ を出力します。