AT_nikkei2019ex_e コラッツ問題

Description

[problemUrl]: https://atcoder.jp/contests/nikkei2019-ex/tasks/nikkei2019ex_e 整数 $ X $ に対し、値 $ f(X) $ を以下のように定義します。 - $ X\ ≧\ 10^{16} $ のとき、$ f(X)\ =\ 0 $ - 上記以外で $ X\ ≦\ 1 $ のとき、$ f(X)\ =\ 0 $ - 上記以外で $ X $ が偶数のとき、 $ f(X)\ =\ f(X/2)\ +\ 1 $ - 上記以外のとき、$ f(X)\ =\ f(3X\ +\ 1)\ +\ 1 $ 整数 $ P $ が与えられます。$ f(N)\ =\ P $ となるような $ 10^{16} $ 以下の正整数 $ N $ をいずれか $ 1 $ つ出力してください。

Input Format

N/A

Output Format

N/A

Explanation/Hint

### 制約 - $ 0\ ≦\ P\ ≦\ 1,000 $