Tree with Small Distances

题意翻译

### 题目描述 给定一颗有根树(根节点为 $1$)。要求往树中加入一些边使得从根节点到其他节点的距离至多是 $2$。 求加入边的最小数量。(边全部都是无向的) ### 输入格式 第一行一个整数 $n$,表示树中的节点个数。 接下来 $n−1$ 行,每行两个整数 $x,y$,表示 $x,y$ 之间有一条连边。 ### 输出格式 一个整数,表示加入边的最小数量。 ### 数据范围 $2 \le n \le 2\times 10^5$

题目描述

You are given an undirected tree consisting of $ n $ vertices. An undirected tree is a connected undirected graph with $ n - 1 $ edges. Your task is to add the minimum number of edges in such a way that the length of the shortest path from the vertex $ 1 $ to any other vertex is at most $ 2 $ . Note that you are not allowed to add loops and multiple edges.

输入输出格式

输入格式


The first line contains one integer $ n $ ( $ 2 \le n \le 2 \cdot 10^5 $ ) — the number of vertices in the tree. The following $ n - 1 $ lines contain edges: edge $ i $ is given as a pair of vertices $ u_i, v_i $ ( $ 1 \le u_i, v_i \le n $ ). It is guaranteed that the given edges form a tree. It is guaranteed that there are no loops and multiple edges in the given edges.

输出格式


Print a single integer — the minimum number of edges you have to add in order to make the shortest distance from the vertex $ 1 $ to any other vertex at most $ 2 $ . Note that you are not allowed to add loops and multiple edges.

输入输出样例

输入样例 #1

7
1 2
2 3
2 4
4 5
4 6
5 7

输出样例 #1

2

输入样例 #2

7
1 2
1 3
2 4
2 5
3 6
1 7

输出样例 #2

0

输入样例 #3

7
1 2
2 3
3 4
3 5
3 6
3 7

输出样例 #3

1

说明

The tree corresponding to the first example: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1029E/ca72ba8f2382aa39d178a32163f0f1f063cb44cb.png) The answer is $ 2 $ , some of the possible answers are the following: $ [(1, 5), (1, 6)] $ , $ [(1, 4), (1, 7)] $ , $ [(1, 6), (1, 7)] $ . The tree corresponding to the second example: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1029E/d73175269a1bcbf13468929d67426008434bf123.png) The answer is $ 0 $ . The tree corresponding to the third example: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1029E/b047dddebcda07e8b951556140eebf0526e2146e.png) The answer is $ 1 $ , only one possible way to reach it is to add the edge $ (1, 3) $ .