CF1033D Divisors

Description

You are given $ n $ integers $ a_1, a_2, \ldots, a_n $ . Each of $ a_i $ has between $ 3 $ and $ 5 $ divisors. Consider $ a = \prod a_i $ — the product of all input integers. Find the number of divisors of $ a $ . As this number may be very large, print it modulo prime number $ 998244353 $ .

Input Format

N/A

Output Format

N/A

Explanation/Hint

In the first case, $ a = 19305 $ . Its divisors are $ 1, 3, 5, 9, 11, 13, 15, 27, 33, 39, 45, 55, 65, 99, 117, 135, 143, 165, 195, 297, 351, 429, 495, 585, 715, 1287, 1485, 1755, 2145, 3861, 6435, 19305 $ — a total of $ 32 $ . In the second case, $ a $ has four divisors: $ 1 $ , $ 86028121 $ , $ 86028157 $ , and $ 7400840699802997 $ . In the third case $ a = 202600445671925364698739061629083877981962069703140268516570564888699 375209477214045102253766023072401557491054453690213483547 $ . In the fourth case, $ a=512=2^9 $ , so answer equals to $ 10 $ .