CF1080E Sonya and Matrix Beauty

Description

Sonya had a birthday recently. She was presented with the matrix of size $ n\times m $ and consist of lowercase Latin letters. We assume that the rows are numbered by integers from $ 1 $ to $ n $ from bottom to top, and the columns are numbered from $ 1 $ to $ m $ from left to right. Let's call a submatrix $ (i_1, j_1, i_2, j_2) $ $ (1\leq i_1\leq i_2\leq n; 1\leq j_1\leq j_2\leq m) $ elements $ a_{ij} $ of this matrix, such that $ i_1\leq i\leq i_2 $ and $ j_1\leq j\leq j_2 $ . Sonya states that a submatrix is beautiful if we can independently reorder the characters in each row (not in column) so that all rows and columns of this submatrix form palidroms. Let's recall that a string is called palindrome if it reads the same from left to right and from right to left. For example, strings $ abacaba, bcaacb, a $ are palindromes while strings $ abca, acbba, ab $ are not. Help Sonya to find the number of beautiful submatrixes. Submatrixes are different if there is an element that belongs to only one submatrix.

Input Format

N/A

Output Format

N/A

Explanation/Hint

In the first example, the following submatrixes are beautiful: $ ((1, 1), (1, 1)); ((1, 2), (1, 2)); $ $ ((1, 3), (1, 3)); ((1, 1), (1, 3)) $ . In the second example, all submatrixes that consist of one element and the following are beautiful: $ ((1, 1), (2, 1)); $ $ ((1, 1), (1, 3)); ((2, 1), (2, 3)); ((1, 1), (2, 3)); ((2, 1), (2, 2)) $ . Some of the beautiful submatrixes are: $ ((1, 1), (1, 5)); ((1, 2), (3, 4)); $ $ ((1, 1), (3, 5)) $ . The submatrix $ ((1, 1), (3, 5)) $ is beautiful since it can be reordered as: `

accca

aabaa

accca

`In such a matrix every row and every column form palindromes.