Multidimensional Queries
题意翻译
给你 $n$ 个 $k$ 维的点 $a_{1..n}$,定义两点 $(x_1,x_2,\cdots,x_k),(y_1,y_2,\cdots,y_k)$ 间的曼哈顿距离为 $\sum_{i=1}^k|x_i-y_i|$ 。
你需要执行下面两种操作:
- $1\ i\ b_1\ b_2\cdots b_k$,表示将 $a_i$ 修改为 $(b_1,b_2,\cdots,b_k)$ 。
- $2\ l\ r$,表示询问 $[l,r]$ 内最大的两点间曼哈顿距离,即任取 $x,y\in[l,r]$ 得到的所有曼哈顿距离中的最大值。
题目描述
You are given an array $ a $ of $ n $ points in $ k $ -dimensional space. Let the distance between two points $ a_x $ and $ a_y $ be $ \sum \limits_{i = 1}^{k} |a_{x, i} - a_{y, i}| $ (it is also known as Manhattan distance).
You have to process $ q $ queries of the following two types:
- $ 1 $ $ i $ $ b_1 $ $ b_2 $ ... $ b_k $ — set $ i $ -th element of $ a $ to the point $ (b_1, b_2, \dots, b_k) $ ;
- $ 2 $ $ l $ $ r $ — find the maximum distance between two points $ a_i $ and $ a_j $ , where $ l \le i, j \le r $ .
输入输出格式
输入格式
The first line contains two numbers $ n $ and $ k $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 1 \le k \le 5 $ ) — the number of elements in $ a $ and the number of dimensions of the space, respectively.
Then $ n $ lines follow, each containing $ k $ integers $ a_{i, 1} $ , $ a_{i, 2} $ , ..., $ a_{i, k} $ ( $ -10^6 \le a_{i, j} \le 10^6 $ ) — the coordinates of $ i $ -th point.
The next line contains one integer $ q $ ( $ 1 \le q \le 2 \cdot 10^5 $ ) — the number of queries.
Then $ q $ lines follow, each denoting a query. There are two types of queries:
- $ 1 $ $ i $ $ b_1 $ $ b_2 $ ... $ b_k $ ( $ 1 \le i \le n $ , $ -10^6 \le b_j \le 10^6 $ ) — set $ i $ -th element of $ a $ to the point $ (b_1, b_2, \dots, b_k) $ ;
- $ 2 $ $ l $ $ r $ ( $ 1 \le l \le r \le n $ ) — find the maximum distance between two points $ a_i $ and $ a_j $ , where $ l \le i, j \le r $ .
There is at least one query of the second type.
输出格式
Print the answer for each query of the second type.
输入输出样例
输入样例 #1
5 2
1 2
2 3
3 4
4 5
5 6
7
2 1 5
2 1 3
2 3 5
1 5 -1 -2
2 1 5
1 4 -1 -2
2 1 5
输出样例 #1
8
4
4
12
10