CF1097H Mateusz and an Infinite Sequence

题目描述

给出整数 $m,d$ 和一个序列 $\textrm{gen}$,保证 $\textrm{gen}_1 = 0$。 对两个整数序列 $S$ 和 $T$ 定义 $S+T$ 表示将序列 $T$ 拼接在序列 $S$ 后得到的序列; 对于一个整数序列 $S$ 和一个整数 $x$ 定义 $S+x$ 表示对序列 $S$ 中的所有数 $p$ 进行操作 $p \leftarrow (p+x) \bmod m$ 得到的序列; 定义序列 $M_i$: - 如果 $i=0$,则 $M_i = \{0\}$ - 否则 $M_i = (M_{i-1}+\textrm{gen}_1)+(M_{i-1} + \textrm{gen}_2) + \ldots + (M_{i-1} + \textrm{gen}_d)$。 因为 $\textrm{gen}_1=0$,所以对于 $i>0$,$M_{i-1}$ 是 $M_i$ 的前缀,故 $M_\infty$ 是良定义的。 接下来给出一个长度为 $n$ 的序列 $B$ 和两个整数 $l,r$,定义序列 $A$ 表示 $M_\infty$ 中第 $l$ 到第 $r$ 个元素依次形成的序列,注意序列下标从 $1$ 开始。 定义序列 $P$ 严格大于序列 $Q$ 当且仅当 $|P| = |Q|$ 且 $\forall i \in[1,|Q|],P_i \geq Q_i$。 对于序列 $A$ 的 $|A|-n+1$ 个长度为 $n$ 的连续子串,你需要给出其中 $B$ 严格大于的子串有多少个。

输入格式

输出格式

说明/提示

Thorse-Radewoosh sequence in the first example is the standard Thue-Morse sequence, so the sequence $ A $ is as follows: $ 11010011001011010010 $ . Here are the places where the sequence $ B $ majorizes $ A $ : ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1097H/258d8a81f8e52ebbcf740c8332ed520b2aa7ae0c.png)