Number of Components
题意翻译
有一条$n(1 \leq n \leq 10^5)$个节点的链,编号相邻节点有边,每个点一个权值$a_i(1 \leq a_i \leq n)$,$f(l,r)$定义为权值在$[l,r]$的点中的连通块数量求$\sum_{l=1}^{n}\sum_{r=l}^{n}f(l,r)$
题目描述
The Kingdom of Kremland is a tree (a connected undirected graph without cycles) consisting of $ n $ vertices. Each vertex $ i $ has its own value $ a_i $ . All vertices are connected in series by edges. Formally, for every $ 1 \leq i < n $ there is an edge between the vertices of $ i $ and $ i+1 $ .
Denote the function $ f(l, r) $ , which takes two integers $ l $ and $ r $ ( $ l \leq r $ ):
- We leave in the tree only vertices whose values range from $ l $ to $ r $ .
- The value of the function will be the number of connected components in the new graph.
Your task is to calculate the following sum: $ $$$\sum_{l=1}^{n} \sum_{r=l}^{n} f(l, r) $ $$$
输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 1 \leq n \leq 10^5 $ ) — the number of vertices in the tree.
The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq n $ ) — the values of the vertices.
输出格式
Print one number — the answer to the problem.
输入输出样例
输入样例 #1
3
2 1 3
输出样例 #1
7
输入样例 #2
4
2 1 1 3
输出样例 #2
11
输入样例 #3
10
1 5 2 5 5 3 10 6 5 1
输出样例 #3
104
说明
In the first example, the function values will be as follows:
- $ f(1, 1)=1 $ (there is only a vertex with the number $ 2 $ , which forms one component)
- $ f(1, 2)=1 $ (there are vertices $ 1 $ and $ 2 $ that form one component)
- $ f(1, 3)=1 $ (all vertices remain, one component is obtained)
- $ f(2, 2)=1 $ (only vertex number $ 1 $ )
- $ f(2, 3)=2 $ (there are vertices $ 1 $ and $ 3 $ that form two components)
- $ f(3, 3)=1 $ (only vertex $ 3 $ )
Totally out $ 7 $ .In the second example, the function values will be as follows:
- $ f(1, 1)=1 $
- $ f(1, 2)=1 $
- $ f(1, 3)=1 $
- $ f(1, 4)=1 $
- $ f(2, 2)=1 $
- $ f(2, 3)=2 $
- $ f(2, 4)=2 $
- $ f(3, 3)=1 $
- $ f(3, 4)=1 $
- $ f(4, 4)=0 $ (there is no vertex left, so the number of components is $ 0 $ )
Totally out $ 11 $ .