CF1188D Make Equal
Description
You are given $ n $ numbers $ a_1, a_2, \dots, a_n $ . In one operation we can add to any one of those numbers a nonnegative integer power of $ 2 $ .
What is the smallest number of operations we need to perform to make all $ n $ numbers equal? It can be proved that under given constraints it doesn't exceed $ 10^{18} $ .
Input Format
N/A
Output Format
N/A
Explanation/Hint
In the first example, all numbers are already equal. So the needed number of operation is $ 0 $ .
In the second example, we can apply the operation $ 3 $ times: add $ 8 $ to first $ 2 $ , add $ 8 $ to second $ 2 $ , add $ 2 $ to $ 8 $ , making all numbers equal to $ 10 $ . It can be proved that we can't make all numbers equal in less than $ 3 $ operations.