CF1228C Primes and Multiplication
Description
Let's introduce some definitions that will be needed later.
Let $ prime(x) $ be the set of prime divisors of $ x $ . For example, $ prime(140) = \{ 2, 5, 7 \} $ , $ prime(169) = \{ 13 \} $ .
Let $ g(x, p) $ be the maximum possible integer $ p^k $ where $ k $ is an integer such that $ x $ is divisible by $ p^k $ . For example:
- $ g(45, 3) = 9 $ ( $ 45 $ is divisible by $ 3^2=9 $ but not divisible by $ 3^3=27 $ ),
- $ g(63, 7) = 7 $ ( $ 63 $ is divisible by $ 7^1=7 $ but not divisible by $ 7^2=49 $ ).
Let $ f(x, y) $ be the product of $ g(y, p) $ for all $ p $ in $ prime(x) $ . For example:
- $ f(30, 70) = g(70, 2) \cdot g(70, 3) \cdot g(70, 5) = 2^1 \cdot 3^0 \cdot 5^1 = 10 $ ,
- $ f(525, 63) = g(63, 3) \cdot g(63, 5) \cdot g(63, 7) = 3^2 \cdot 5^0 \cdot 7^1 = 63 $ .
You have integers $ x $ and $ n $ . Calculate $ f(x, 1) \cdot f(x, 2) \cdot \ldots \cdot f(x, n) \bmod{(10^{9} + 7)} $ .
Input Format
N/A
Output Format
N/A
Explanation/Hint
In the first example, $ f(10, 1) = g(1, 2) \cdot g(1, 5) = 1 $ , $ f(10, 2) = g(2, 2) \cdot g(2, 5) = 2 $ .
In the second example, actual value of formula is approximately $ 1.597 \cdot 10^{171} $ . Make sure you print the answer modulo $ (10^{9} + 7) $ .
In the third example, be careful about overflow issue.