Another Filling the Grid
题意翻译
给定一个 $n\times n$ 的矩阵,用 $1\sim k$ 的数填充,每行每列最小值均为 $1$,问有多少填法,对 $10^9+7$ 取模。
$1\le n\le 250,1\le k\le 10^9$。
题目描述
You have $ n \times n $ square grid and an integer $ k $ . Put an integer in each cell while satisfying the conditions below.
- All numbers in the grid should be between $ 1 $ and $ k $ inclusive.
- Minimum number of the $ i $ -th row is $ 1 $ ( $ 1 \le i \le n $ ).
- Minimum number of the $ j $ -th column is $ 1 $ ( $ 1 \le j \le n $ ).
Find the number of ways to put integers in the grid. Since the answer can be very large, find the answer modulo $ (10^{9} + 7) $ .
![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1228E/461043b230da4734e02a378fa88336fd5a76ad41.png) These are the examples of valid and invalid grid when $ n=k=2 $ .
输入输出格式
输入格式
The only line contains two integers $ n $ and $ k $ ( $ 1 \le n \le 250 $ , $ 1 \le k \le 10^{9} $ ).
输出格式
Print the answer modulo $ (10^{9} + 7) $ .
输入输出样例
输入样例 #1
2 2
输出样例 #1
7
输入样例 #2
123 456789
输出样例 #2
689974806
说明
In the first example, following $ 7 $ cases are possible.
![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1228E/50e0a56b2ebcb373865c65f252219c6e6fb65791.png)In the second example, make sure you print the answer modulo $ (10^{9} + 7) $ .