CF1253E Antenna Coverage
Description
The mayor of the Central Town wants to modernize Central Street, represented in this problem by the $ (Ox) $ axis.
On this street, there are $ n $ antennas, numbered from $ 1 $ to $ n $ . The $ i $ -th antenna lies on the position $ x_i $ and has an initial scope of $ s_i $ : it covers all integer positions inside the interval $ [x_i - s_i; x_i + s_i] $ .
It is possible to increment the scope of any antenna by $ 1 $ , this operation costs $ 1 $ coin. We can do this operation as much as we want (multiple times on the same antenna if we want).
To modernize the street, we need to make all integer positions from $ 1 $ to $ m $ inclusive covered by at least one antenna. Note that it is authorized to cover positions outside $ [1; m] $ , even if it's not required.
What is the minimum amount of coins needed to achieve this modernization?
Input Format
N/A
Output Format
N/A
Explanation/Hint
In the first example, here is a possible strategy:
- Increase the scope of the first antenna by $ 40 $ , so that it becomes $ 2 + 40 = 42 $ . This antenna will cover interval $ [43 - 42; 43 + 42] $ which is $ [1; 85] $
- Increase the scope of the second antenna by $ 210 $ , so that it becomes $ 4 + 210 = 214 $ . This antenna will cover interval $ [300 - 214; 300 + 214] $ , which is $ [86; 514] $
- Increase the scope of the third antenna by $ 31 $ , so that it becomes $ 10 + 31 = 41 $ . This antenna will cover interval $ [554 - 41; 554 + 41] $ , which is $ [513; 595] $
Total cost is $ 40 + 210 + 31 = 281 $ . We can prove that it's the minimum cost required to make all positions from $ 1 $ to $ 595 $ covered by at least one antenna.
Note that positions $ 513 $ and $ 514 $ are in this solution covered by two different antennas, but it's not important.
—
In the second example, the first antenna already covers an interval $ [0; 2] $ so we have nothing to do.
Note that the only position that we needed to cover was position $ 1 $ ; positions $ 0 $ and $ 2 $ are covered, but it's not important.