Cheap Robot

题意翻译

给你一张 $N$ 个点的带权无向连通图,其中结点 $1,2,…,k$ 为充电中心。 一个机器人在图中行走,假设机器人的电池容量为 $c$,则任何时刻,机器人的电量 $x$ 都必须满足 $0\le x\le c$。如果机器人沿着一条边权为 $w$ 的边从结点 $i$ 走到结点 $j$,它的电量会减少 $w$。机器人可以在到达某个充电中心时把电量充满。 现在有 $q$ 个询问,每次询问机器人要从 $a$ 点到达 $b$ 点,电池容量至少为多少,各个询问相互独立。保证 $a$ 点和 $b$ 点都是充电中心。 translated by vectorwyx

题目描述

You're given a simple, undirected, connected, weighted graph with $ n $ nodes and $ m $ edges. Nodes are numbered from $ 1 $ to $ n $ . There are exactly $ k $ centrals (recharge points), which are nodes $ 1, 2, \ldots, k $ . We consider a robot moving into this graph, with a battery of capacity $ c $ , not fixed by the constructor yet. At any time, the battery contains an integer amount $ x $ of energy between $ 0 $ and $ c $ inclusive. Traversing an edge of weight $ w_i $ is possible only if $ x \ge w_i $ , and costs $ w_i $ energy points ( $ x := x - w_i $ ). Moreover, when the robot reaches a central, its battery is entirely recharged ( $ x := c $ ). You're given $ q $ independent missions, the $ i $ -th mission requires to move the robot from central $ a_i $ to central $ b_i $ . For each mission, you should tell the minimum capacity required to acheive it.

输入输出格式

输入格式


The first line contains four integers $ n $ , $ m $ , $ k $ and $ q $ ( $ 2 \le k \le n \le 10^5 $ and $ 1 \le m, q \le 3 \cdot 10^5 $ ). The $ i $ -th of the next $ m $ lines contains three integers $ u_i $ , $ v_i $ and $ w_i $ ( $ 1 \le u_i, v_i \le n $ , $ u_i \neq v_i $ , $ 1 \le w_i \le 10^9 $ ), that mean that there's an edge between nodes $ u $ and $ v $ , with a weight $ w_i $ . It is guaranteed that the given graph is simple (there is no self-loop, and there is at most one edge between every pair of nodes) and connected. The $ i $ -th of the next $ q $ lines contains two integers $ a_i $ and $ b_i $ ( $ 1 \le a_i, b_i \le k $ , $ a_i \neq b_i $ ).

输出格式


You have to output $ q $ lines, where the $ i $ -th line contains a single integer : the minimum capacity required to acheive the $ i $ -th mission.

输入输出样例

输入样例 #1

10 9 3 1
10 9 11
9 2 37
2 4 4
4 1 8
1 5 2
5 7 3
7 3 2
3 8 4
8 6 13
2 3

输出样例 #1

12

输入样例 #2

9 11 3 2
1 3 99
1 4 5
4 5 3
5 6 3
6 4 11
6 7 21
7 2 6
7 8 4
8 9 3
9 2 57
9 3 2
3 1
2 3

输出样例 #2

38
15

说明

In the first example, the graph is the chain $ 10 - 9 - 2^C - 4 - 1^C - 5 - 7 - 3^C - 8 - 6 $ , where centrals are nodes $ 1 $ , $ 2 $ and $ 3 $ . For the mission $ (2, 3) $ , there is only one simple path possible. Here is a simulation of this mission when the capacity is $ 12 $ . - The robot begins on the node $ 2 $ , with $ c = 12 $ energy points. - The robot uses an edge of weight $ 4 $ . - The robot reaches the node $ 4 $ , with $ 12 - 4 = 8 $ energy points. - The robot uses an edge of weight $ 8 $ . - The robot reaches the node $ 1 $ with $ 8 - 8 = 0 $ energy points. - The robot is on a central, so its battery is recharged. He has now $ c = 12 $ energy points. - The robot uses an edge of weight $ 2 $ . - The robot is on the node $ 5 $ , with $ 12 - 2 = 10 $ energy points. - The robot uses an edge of weight $ 3 $ . - The robot is on the node $ 7 $ , with $ 10 - 3 = 7 $ energy points. - The robot uses an edge of weight $ 2 $ . - The robot is on the node $ 3 $ , with $ 7 - 2 = 5 $ energy points. - The robot is on a central, so its battery is recharged. He has now $ c = 12 $ energy points. - End of the simulation. Note that if value of $ c $ was lower than $ 12 $ , we would have less than $ 8 $ energy points on node $ 4 $ , and we would be unable to use the edge $ 4 \leftrightarrow 1 $ of weight $ 8 $ . Hence $ 12 $ is the minimum capacity required to acheive the mission. — The graph of the second example is described here (centrals are red nodes): ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1253F/a26fbeba71b5c3f08f761ccd3ba5eda79178ef04.png)The robot can acheive the mission $ (3, 1) $ with a battery of capacity $ c = 38 $ , using the path $ 3 \rightarrow 9 \rightarrow 8 \rightarrow 7 \rightarrow 2 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 1 $ The robot can acheive the mission $ (2, 3) $ with a battery of capacity $ c = 15 $ , using the path $ 2 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 3 $