CF1271E Common Number
Description
We can see that if we choose some value $ v $ and will apply function $ f $ to it, then apply $ f $ to $ f(v) $ , and so on, we'll eventually get $ 1 $ . Let's write down all values we get in this process in a list and denote this list as $ path(v) $ . For example, $ path(1) = \[1\] $ , $ path(15) = \[15, 14, 7, 6, 3, 2, 1\] $ , $ path(32) = \[32, 16, 8, 4, 2, 1\] $ .
Let's write all lists $ path(x) $ for every $ x $ from $ 1 $ to $ n $ . The question is next: what is the maximum value $ y $ such that $ y $ is contained in at least $ k $ different lists $ path(x) $ ?
Formally speaking, you need to find maximum $ y $ such that $ \\left| \\{ x ~|~ 1 \\le x \\le n, y \\in path(x) \\} \\right| \\ge k$$$.