CF1271E Common Number

Description

At first, let's define function $ f(x) $ as follows: $ $$$ \begin{matrix} f(x) & = & \left\{ \begin{matrix} \frac{x}{2} & \mbox{if } x \text{ is even} \\ x - 1 & \mbox{otherwise } \end{matrix} \right. \end{matrix} $ $

We can see that if we choose some value $ v $ and will apply function $ f $ to it, then apply $ f $ to $ f(v) $ , and so on, we'll eventually get $ 1 $ . Let's write down all values we get in this process in a list and denote this list as $ path(v) $ . For example, $ path(1) = \[1\] $ , $ path(15) = \[15, 14, 7, 6, 3, 2, 1\] $ , $ path(32) = \[32, 16, 8, 4, 2, 1\] $ .

Let's write all lists $ path(x) $ for every $ x $ from $ 1 $ to $ n $ . The question is next: what is the maximum value $ y $ such that $ y $ is contained in at least $ k $ different lists $ path(x) $ ?

Formally speaking, you need to find maximum $ y $ such that $ \\left| \\{ x ~|~ 1 \\le x \\le n, y \\in path(x) \\} \\right| \\ge k$$$.

Input Format

N/A

Output Format

N/A

Explanation/Hint

In the first example, the answer is $ 5 $ , since $ 5 $ occurs in $ path(5) $ , $ path(10) $ and $ path(11) $ . In the second example, the answer is $ 4 $ , since $ 4 $ occurs in $ path(4) $ , $ path(5) $ , $ path(8) $ , $ path(9) $ , $ path(10) $ and $ path(11) $ . In the third example $ n = k $ , so the answer is $ 1 $ , since $ 1 $ is the only number occuring in all paths for integers from $ 1 $ to $ 20 $ .