Dr. Evil Underscores
题意翻译
有一个长度为 $n\ (1\leq n\leq 10^5)$ 的整数序列 $a_1,\cdots,a_n\ \ (0\leq a_i\leq 2^{30}-1)$,你需要找到一个非负整数 $X$ 使得 $\max(a_i\oplus X)$ 最小,其中 $\oplus$ 为按位异或运算。
输入这个序列,输出 $\max(a_i\oplus X)$ 的最小值。
题目描述
Today, as a friendship gift, Bakry gave Badawy $ n $ integers $ a_1, a_2, \dots, a_n $ and challenged him to choose an integer $ X $ such that the value $ \underset{1 \leq i \leq n}{\max} (a_i \oplus X) $ is minimum possible, where $ \oplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR).
As always, Badawy is too lazy, so you decided to help him and find the minimum possible value of $ \underset{1 \leq i \leq n}{\max} (a_i \oplus X) $ .
输入输出格式
输入格式
The first line contains integer $ n $ ( $ 1\le n \le 10^5 $ ).
The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \le a_i \le 2^{30}-1 $ ).
输出格式
Print one integer — the minimum possible value of $ \underset{1 \leq i \leq n}{\max} (a_i \oplus X) $ .
输入输出样例
输入样例 #1
3
1 2 3
输出样例 #1
2
输入样例 #2
2
1 5
输出样例 #2
4
说明
In the first sample, we can choose $ X = 3 $ .
In the second sample, we can choose $ X = 5 $ .