CF1288D Minimax Problem
Description
You are given $ n $ arrays $ a_1 $ , $ a_2 $ , ..., $ a_n $ ; each array consists of exactly $ m $ integers. We denote the $ y $ -th element of the $ x $ -th array as $ a_{x, y} $ .
You have to choose two arrays $ a_i $ and $ a_j $ ( $ 1 \le i, j \le n $ , it is possible that $ i = j $ ). After that, you will obtain a new array $ b $ consisting of $ m $ integers, such that for every $ k \in [1, m] $ $ b_k = \max(a_{i, k}, a_{j, k}) $ .
Your goal is to choose $ i $ and $ j $ so that the value of $ \min \limits_{k = 1}^{m} b_k $ is maximum possible.
Input Format
N/A
Output Format
N/A