Sum of Prefix Sums
题意翻译
- 有一颗 $n$ 个节点的树 $(2 \leq n \leq 150000)$
- 树每个节点有一个权值 $a_i (1 \leq a_i \leq 10^6)$
- 定义树上$u \rightarrow v$的链的权值如下:
- 将$u$到$v$的路径上点的权值依次排列在数组中
- 该数组的前缀和的和即这条路径的权值
- 请求出权值最大的链,输出权值
题目描述
We define the sum of prefix sums of an array $ [s_1, s_2, \dots, s_k] $ as $ s_1 + (s_1 + s_2) + (s_1 + s_2 + s_3) + \dots + (s_1 + s_2 + \dots + s_k) $ .
You are given a tree consisting of $ n $ vertices. Each vertex $ i $ has an integer $ a_i $ written on it. We define the value of the simple path from vertex $ u $ to vertex $ v $ as follows: consider all vertices appearing on the path from $ u $ to $ v $ , write down all the numbers written on these vertices in the order they appear on the path, and compute the sum of prefix sums of the resulting sequence.
Your task is to calculate the maximum value over all paths in the tree.
输入输出格式
输入格式
The first line contains one integer $ n $ ( $ 2 \le n \le 150000 $ ) — the number of vertices in the tree.
Then $ n - 1 $ lines follow, representing the edges of the tree. Each line contains two integers $ u_i $ and $ v_i $ ( $ 1 \le u_i, v_i \le n $ , $ u_i \ne v_i $ ), denoting an edge between vertices $ u_i $ and $ v_i $ . It is guaranteed that these edges form a tree.
The last line contains $ n $ integers $ a_1 $ , $ a_2 $ , ..., $ a_n $ ( $ 1 \le a_i \le 10^6 $ ).
输出格式
Print one integer — the maximum value over all paths in the tree.
输入输出样例
输入样例 #1
4
4 2
3 2
4 1
1 3 3 7
输出样例 #1
36
说明
The best path in the first example is from vertex $ 3 $ to vertex $ 1 $ . It gives the sequence $ [3, 3, 7, 1] $ , and the sum of prefix sums is $ 36 $ .