CF1334G Substring Search

Description

You are given a permutation $ p $ consisting of exactly $ 26 $ integers from $ 1 $ to $ 26 $ (since it is a permutation, each integer from $ 1 $ to $ 26 $ occurs in $ p $ exactly once) and two strings $ s $ and $ t $ consisting of lowercase Latin letters. A substring $ t' $ of string $ t $ is an occurence of string $ s $ if the following conditions are met: 1. $ |t'| = |s| $ ; 2. for each $ i \in [1, |s|] $ , either $ s_i = t'_i $ , or $ p_{idx(s_i)} = idx(t'_i) $ , where $ idx(c) $ is the index of character $ c $ in Latin alphabet ( $ idx(\text{a}) = 1 $ , $ idx(\text{b}) = 2 $ , $ idx(\text{z}) = 26 $ ). For example, if $ p_1 = 2 $ , $ p_2 = 3 $ , $ p_3 = 1 $ , $ s = \text{abc} $ , $ t = \text{abcaaba} $ , then three substrings of $ t $ are occurences of $ s $ (they are $ t' = \text{abc} $ , $ t' = \text{bca} $ and $ t' = \text{aba} $ ). For each substring of $ t $ having length equal to $ |s| $ , check if it is an occurence of $ s $ .

Input Format

N/A

Output Format

N/A