CF1391A Suborrays

Description

A permutation of length $ n $ is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. For example, $ [2,3,1,5,4] $ is a permutation, but $ [1,2,2] $ is not a permutation ( $ 2 $ appears twice in the array) and $ [1,3,4] $ is also not a permutation ( $ n=3 $ but there is $ 4 $ in the array). For a positive integer $ n $ , we call a permutation $ p $ of length $ n $ good if the following condition holds for every pair $ i $ and $ j $ ( $ 1 \le i \le j \le n $ ) — - $ (p_i \text{ OR } p_{i+1} \text{ OR } \ldots \text{ OR } p_{j-1} \text{ OR } p_{j}) \ge j-i+1 $ , where $ \text{OR} $ denotes the [bitwise OR operation.](https://en.wikipedia.org/wiki/Bitwise_operation#OR) In other words, a permutation $ p $ is good if for every subarray of $ p $ , the $ \text{OR} $ of all elements in it is not less than the number of elements in that subarray. Given a positive integer $ n $ , output any good permutation of length $ n $ . We can show that for the given constraints such a permutation always exists.

Input Format

N/A

Output Format

N/A

Explanation/Hint

For $ n = 3 $ , $ [3,1,2] $ is a good permutation. Some of the subarrays are listed below. - $ 3\text{ OR }1 = 3 \geq 2 $ $ (i = 1,j = 2) $ - $ 3\text{ OR }1\text{ OR }2 = 3 \geq 3 $ $ (i = 1,j = 3) $ - $ 1\text{ OR }2 = 3 \geq 2 $ $ (i = 2,j = 3) $ - $ 1 \geq 1 $ $ (i = 2,j = 2) $ Similarly, you can verify that $ [4,3,5,2,7,1,6] $ is also good.