Boring Queries

题意翻译

给定一个长度为 $n$ 的序列 $a$ 以及 $q$ 次询问 。 每次询问包含 $2$ 个整数 $l,r$ ,你需要求出区间 $[l,r]$ 的最小公倍数对 $10^9 + 7$ 取模的结果。 询问强制在线 。对于每次读入的 $x,y$ ,你需要进行以下操作得到 $l,r$ : $l=(x+last)\ mod\ n+1,r=(y+last)\ mod\ n+1,$ 如果 $l$ 比 $r$ 大,你需要交换$l,r$。 数据范围: $1\leq n,q\leq 10^5,1 \leq a_i\leq 2\cdot 10^5,1\leq x,y \leq 10^5$

题目描述

Yura owns a quite ordinary and boring array $ a $ of length $ n $ . You think there is nothing more boring than that, but Vladik doesn't agree! In order to make Yura's array even more boring, Vladik makes $ q $ boring queries. Each query consists of two integers $ x $ and $ y $ . Before answering a query, the bounds $ l $ and $ r $ for this query are calculated: $ l = (last + x) \bmod n + 1 $ , $ r = (last + y) \bmod n + 1 $ , where $ last $ is the answer on the previous query (zero initially), and $ \bmod $ is the remainder operation. Whenever $ l > r $ , they are swapped. After Vladik computes $ l $ and $ r $ for a query, he is to compute the least common multiple (LCM) on the segment $ [l; r] $ of the initial array $ a $ modulo $ 10^9 + 7 $ . LCM of a multiset of integers is the smallest positive integer that is divisible by all the elements of the multiset. The obtained LCM is the answer for this query. Help Vladik and compute the answer for each query!

输入输出格式

输入格式


The first line contains a single integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the length of the array. The second line contains $ n $ integers $ a_i $ ( $ 1 \le a_i \le 2 \cdot 10^5 $ ) — the elements of the array. The third line contains a single integer $ q $ ( $ 1 \le q \le 10^5 $ ) — the number of queries. The next $ q $ lines contain two integers $ x $ and $ y $ each ( $ 1 \le x, y \le n $ ) — the description of the corresponding query.

输出格式


Print $ q $ integers — the answers for the queries.

输入输出样例

输入样例 #1

3
2 3 5
4
1 3
3 3
2 3
2 3

输出样例 #1

6
2
15
30

说明

Consider the example: - boundaries for first query are $ (0 + 1) \bmod 3 + 1 = 2 $ and $ (0 + 3) \bmod 3 + 1 = 1 $ . LCM for segment $ [1, 2] $ is equal to $ 6 $ ; - boundaries for second query are $ (6 + 3) \bmod 3 + 1 = 1 $ and $ (6 + 3) \bmod 3 + 1 = 1 $ . LCM for segment $ [1, 1] $ is equal to $ 2 $ ; - boundaries for third query are $ (2 + 2) \bmod 3 + 1 = 2 $ and $ (2 + 3) \bmod 3 + 1 = 3 $ . LCM for segment $ [2, 3] $ is equal to $ 15 $ ; - boundaries for fourth query are $ (15 + 2) \bmod 3 + 1 = 3 $ and $ (15 + 3) \bmod 3 + 1 = 1 $ . LCM for segment $ [1, 3] $ is equal to $ 30 $ .