CF1458F Range Diameter Sum
Description
You are given a tree with $ n $ vertices numbered $ 1, \ldots, n $ . A tree is a connected simple graph without cycles.
Let $ \mathrm{dist}(u, v) $ be the number of edges in the unique simple path connecting vertices $ u $ and $ v $ .
Let $ \mathrm{diam}(l, r) = \max \mathrm{dist}(u, v) $ over all pairs $ u, v $ such that $ l \leq u, v \leq r $ .
Compute $ \sum_{1 \leq l \leq r \leq n} \mathrm{diam}(l, r) $ .
Input Format
N/A
Output Format
N/A