Swapping Problem

题意翻译

给定 $n$ 和两个长度为 $n$ 的数组 $a,b$,最多交换一次 $b$ 中的两个位置的值(可以不交换)。 最小化 $\sum_{i=1}^{n}|a_i-b_i|$。 $n \le 2\times10^5$;$a_i,b_i\le 10^9$。

题目描述

You are given 2 arrays $ a $ and $ b $ , both of size $ n $ . You can swap two elements in $ b $ at most once (or leave it as it is), and you are required to minimize the value $ $$$\sum_{i}|a_{i}-b_{i}|. $ $$$ Find the minimum possible value of this sum.

输入输出格式

输入格式


The first line contains a single integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ). The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le {10^9} $ ). The third line contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \le b_i \le {10^9} $ ).

输出格式


Output the minimum value of $ \sum_{i}|a_{i}-b_{i}| $ .

输入输出样例

输入样例 #1

5
5 4 3 2 1
1 2 3 4 5

输出样例 #1

4

输入样例 #2

2
1 3
4 2

输出样例 #2

2

说明

In the first example, we can swap the first and fifth element in array $ b $ , so that it becomes $ [ 5, 2, 3, 4, 1 ] $ . Therefore, the minimum possible value of this sum would be $ |5-5| + |4-2| + |3-3| + |2-4| + |1-1| = 4 $ . In the second example, we can swap the first and second elements. So, our answer would be $ 2 $ .