Manhattan Subarrays

题意翻译

对于平面上的两点 $p(x_p,y_p),q(x_q,y_q)$,我们定义它们之间的曼哈顿距离 $d(p,q)=|x_p-x_q|+|y_p-y_q|$。进一步定义由三个点构成的一组点 $p,q,r$ 是坏的仅当 $d(p,r)=d(p,q)+d(q,r)$。 我们定义序列 $b$ 是好的仅当无法选出一组互不相同的整数 $i,j,k$ 使得 $(b_i,i),(b_j,j),(b_k,k)$ 这组点是坏的。 给定长度为 $n$ 的序列 $a$,求 $a$ 有多少个子段是好的。$T$ 组数据。 $1\leq T\leq5\times10^3;$ $1\leq n,\sum n\leq2\times10^5;1\leq a_i\leq10^9;$

题目描述

Suppose you have two points $ p = (x_p, y_p) $ and $ q = (x_q, y_q) $ . Let's denote the Manhattan distance between them as $ d(p, q) = |x_p - x_q| + |y_p - y_q| $ . Let's say that three points $ p $ , $ q $ , $ r $ form a bad triple if $ d(p, r) = d(p, q) + d(q, r) $ . Let's say that an array $ b_1, b_2, \dots, b_m $ is good if it is impossible to choose three distinct indices $ i $ , $ j $ , $ k $ such that the points $ (b_i, i) $ , $ (b_j, j) $ and $ (b_k, k) $ form a bad triple. You are given an array $ a_1, a_2, \dots, a_n $ . Calculate the number of good subarrays of $ a $ . A subarray of the array $ a $ is the array $ a_l, a_{l + 1}, \dots, a_r $ for some $ 1 \le l \le r \le n $ . Note that, according to the definition, subarrays of length $ 1 $ and $ 2 $ are good.

输入输出格式

输入格式


The first line contains one integer $ t $ ( $ 1 \le t \le 5000 $ ) — the number of test cases. The first line of each test case contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the length of array $ a $ . The second line of each test case contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ). It's guaranteed that the sum of $ n $ doesn't exceed $ 2 \cdot 10^5 $ .

输出格式


For each test case, print the number of good subarrays of array $ a $ .

输入输出样例

输入样例 #1

3
4
2 4 1 3
5
6 9 1 9 6
2
13 37

输出样例 #1

10
12
3

说明

In the first test case, it can be proven that any subarray of $ a $ is good. For example, subarray $ [a_2, a_3, a_4] $ is good since it contains only three elements and: - $ d((a_2, 2), (a_4, 4)) = |4 - 3| + |2 - 4| = 3 $ $ < $ $ d((a_2, 2), (a_3, 3)) + d((a_3, 3), (a_4, 4)) = 3 + 1 + 2 + 1 = 7 $ ; - $ d((a_2, 2), (a_3, 3)) $ $ < $ $ d((a_2, 2), (a_4, 4)) + d((a_4, 4), (a_3, 3)) $ ; - $ d((a_3, 3), (a_4, 4)) $ $ < $ $ d((a_3, 3), (a_2, 2)) + d((a_2, 2), (a_4, 4)) $ ; In the second test case, for example, subarray $ [a_1, a_2, a_3, a_4] $ is not good, since it contains a bad triple $ (a_1, 1) $ , $ (a_2, 2) $ , $ (a_4, 4) $ : - $ d((a_1, 1), (a_4, 4)) = |6 - 9| + |1 - 4| = 6 $ ; - $ d((a_1, 1), (a_2, 2)) = |6 - 9| + |1 - 2| = 4 $ ; - $ d((a_2, 2), (a_4, 4)) = |9 - 9| + |2 - 4| = 2 $ ; So, $ d((a_1, 1), (a_4, 4)) = d((a_1, 1), (a_2, 2)) + d((a_2, 2), (a_4, 4)) $ .