Digits Sum
题意翻译
定义 $S(x)$ 为十进制数字 $x$ 中中每一位的数字之和。共 $T(T\le 1000)$ 组数据,每组数据给定一个正整数 $n(n\le10^9)$,求出 $[1,n]$ 之间有多少个整数 $x$ 满足 $S(x+1) < S(x)$。
题目描述
Let's define $ S(x) $ to be the sum of digits of number $ x $ written in decimal system. For example, $ S(5) = 5 $ , $ S(10) = 1 $ , $ S(322) = 7 $ .
We will call an integer $ x $ interesting if $ S(x + 1) < S(x) $ . In each test you will be given one integer $ n $ . Your task is to calculate the number of integers $ x $ such that $ 1 \le x \le n $ and $ x $ is interesting.
输入输出格式
输入格式
The first line contains one integer $ t $ ( $ 1 \le t \le 1000 $ ) — number of test cases.
Then $ t $ lines follow, the $ i $ -th line contains one integer $ n $ ( $ 1 \le n \le 10^9 $ ) for the $ i $ -th test case.
输出格式
Print $ t $ integers, the $ i $ -th should be the answer for the $ i $ -th test case.
输入输出样例
输入样例 #1
5
1
9
10
34
880055535
输出样例 #1
0
1
1
3
88005553
说明
The first interesting number is equal to $ 9 $ .