Special Numbers
题意翻译
如果一个正整数可以被表示为 $n$ 的若干个**不同的**非负整数次幂的和,则称这个正整数是**特别**的。
例如,当 $n = 4$ 时,$17$ 是特别的,因为它可以表示为 $4^0 + 4^2 = 1 + 16 = 17$,而 $9$ 不是特别的。
每个测试点包含 $t$ 组数据,每组数据给定两个正整数 $n$ 和 $k$,请求出第 $k$ 小的特别的数。
其中 $1 \le t \le 10^4$,$2 \le n \le 10^9,1 \le k \le 10^9$。
答案可能很大,请输出答案对 $10^9 + 7$ 取模的结果。
题目描述
Theofanis really likes sequences of positive integers, thus his teacher (Yeltsa Kcir) gave him a problem about a sequence that consists of only special numbers.
Let's call a positive number special if it can be written as a sum of different non-negative powers of $ n $ . For example, for $ n = 4 $ number $ 17 $ is special, because it can be written as $ 4^0 + 4^2 = 1 + 16 = 17 $ , but $ 9 $ is not.
Theofanis asks you to help him find the $ k $ -th special number if they are sorted in increasing order. Since this number may be too large, output it modulo $ 10^9+7 $ .
输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases.
The first and only line of each test case contains two integers $ n $ and $ k $ ( $ 2 \le n \le 10^9 $ ; $ 1 \le k \le 10^9 $ ).
输出格式
For each test case, print one integer — the $ k $ -th special number in increasing order modulo $ 10^9+7 $ .
输入输出样例
输入样例 #1
3
3 4
2 12
105 564
输出样例 #1
9
12
3595374
说明
For $ n = 3 $ the sequence is $ [1,3,4,9...] $