Weights

题意翻译

给你一个长度为 $N$ 的质量为 $A_1,A_2,\dots,A_N$ 的数组 $A$。每个数组中的值表示各个砝码的重量。 所有砝码的质量均不相同。你可以把每个砝码放在天平的一边(左边或右边)。 你不必按照 $A_1,\dots,A_N$ 的顺序放置砝码。还有一个由字符 $\texttt{L}$ 和 $\texttt{R}$ 组成的字符串 $S$,意思是在放完第 $i$ 个砝码(不是 $A_i$ ,而是选择第 $i$ 个砝码)后,天平的左边或右边应该更重。 找出在天平上放置砝码的顺序,以便满足字符串 $S$ 的规则。 **输入格式** 第一行包含一个整数 $N$($1\le N\le 2\times 10^5$)。 第二行包含 $N$ 个不同的整数,$A_1,A_2,\dots,A_N$($1\le A_i\le 10^9$)。 第三行包含长度为 $N$ 的 $S$ 字符串,仅由字母 $\texttt{L}$ 和 $\texttt{R}$ 组成。 **输出格式** 输出包含 $N$ 行。在每一行中,你应该打印一个整数和一个字母——整数代表你在那一步中放在天平上的重量,字母代表你放重量的天平的一边。如果没有解决方案,打印 $-1$。

题目描述

You are given an array $ A $ of length $ N $ weights of masses $ A_1 $ , $ A_2 $ ... $ A_N $ . No two weights have the same mass. You can put every weight on one side of the balance (left or right). You don't have to put weights in order $ A_1 $ ,..., $ A_N $ . There is also a string $ S $ consisting of characters "L" and "R", meaning that after putting the $ i-th $ weight (not $ A_i $ , but $ i-th $ weight of your choice) left or right side of the balance should be heavier. Find the order of putting the weights on the balance such that rules of string $ S $ are satisfied.

输入输出格式

输入格式


The first line contains one integer $ N $ ( $ 1 \leq N \leq 2*10^5 $ ) - the length of the array $ A $ The second line contains $ N $ distinct integers: $ A_1 $ , $ A_2 $ ,..., $ A_N $ ( $ 1 \leq A_i \leq 10^9 $ ) - the weights given The third line contains string $ S $ of length $ N $ consisting only of letters "L" and "R" - string determining which side of the balance should be heavier after putting the $ i-th $ weight of your choice

输出格式


The output contains $ N $ lines. In every line, you should print one integer and one letter - integer representing the weight you are putting on the balance in that move and the letter representing the side of the balance where you are putting the weight. If there is no solution, print $ -1 $ .

输入输出样例

输入样例 #1

5
3 8 2 13 7
LLRLL

输出样例 #1

3 L
2 R
8 R
13 L
7 L

说明

Explanation for the test case: after the 1st weight: 3 L (left side is heavier) after the 2nd weight: 2 R (left side is heavier) after the 3rd weight: 8 R (right side is heavier) after the 4th weight: 13 L (left side is heavier) after the 5th weight: 7 L (left side is heavier) So, the rules given by string $ S $ are fulfilled and our order of putting the weights is correct.