Find Array
题意翻译
# 题目描述
给定一个整数 $n$ ,要求构造一个整数数组 $a_{1},a_{2},...,a_{n}$ ,使得以下条件成立:
- $1 \le a_{i} \le 10^9$
- $a_{1}<a_{2}<...<a_{n}$
- $a_{i}$ 不能够被 $a_{i-1}$ 整除
可以证明这样的数组在问题的约束下总是存在的。
# 输入格式
第一行包含测试用例的数量 $t$ ( $1 \le t \le 100$ )。
每个测试用例只有一行,包含一个整数 $n$ ( $1 \le n \le 1000$ )。
保证所有测试样例中的 $n$ 的总和不超过 $10^4$
# 输出格式
对于每一个测试样例输出 $n$ 个整数 $a_{1},a_{2},...,a_{n}$ ——你找到的数组。如果有多个数组满足所有条件,则输出其中任何一个即可。
题目描述
Given $ n $ , find any array $ a_1, a_2, \ldots, a_n $ of integers such that all of the following conditions hold:
- $ 1 \le a_i \le 10^9 $ for every $ i $ from $ 1 $ to $ n $ .
- $ a_1 < a_2 < \ldots <a_n $
- For every $ i $ from $ 2 $ to $ n $ , $ a_i $ isn't divisible by $ a_{i-1} $
It can be shown that such an array always exists under the constraints of the problem.
输入输出格式
输入格式
The first line contains the number of test cases $ t $ ( $ 1 \le t \le 100 $ ). Description of the test cases follows.
The only line of each test case contains a single integer $ n $ ( $ 1 \le n \le 1000 $ ).
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^4 $ .
输出格式
For each test case print $ n $ integers $ a_1, a_2, \ldots, a_n $ — the array you found. If there are multiple arrays satisfying all the conditions, print any of them.
输入输出样例
输入样例 #1
3
1
2
7
输出样例 #1
1
2 3
111 1111 11111 111111 1111111 11111111 111111111
说明
In the first test case, array $ [1] $ satisfies all the conditions.
In the second test case, array $ [2, 3] $ satisfies all the conditions, as $ 2<3 $ and $ 3 $ is not divisible by $ 2 $ .
In the third test case, array $ [111, 1111, 11111, 111111, 1111111, 11111111, 111111111] $ satisfies all the conditions, as it's increasing and $ a_i $ isn't divisible by $ a_{i-1} $ for any $ i $ from $ 2 $ to $ 7 $ .