Unusual Minesweeper
题意翻译
### 题目描述
Polycarp 非常喜欢玩扫雷游戏。最近,他发现了一个类似的游戏,也有这样的规则。
场地上有一些地雷,每个地雷的坐标 $(x_i,y_i)$ 都是已知的,每个坐标都有以秒为单位的倒计时,之后地雷就会爆炸。爆炸后,地雷会引爆所有与地雷垂直和水平距离在 $k$ 之内的地雷,结果就是我们得到了形状为"+"的爆炸。而一次爆炸可以引起新的爆炸,每次都是这样。
此外,从 $0$ 秒开始,Polycarp 可以每秒引爆任意一个地雷,连锁反应随之发生。需要注意的是,地雷会立刻爆炸并立刻引爆其它地雷。
Polycarp 想创造一个新纪录,请你帮他计算一下,他最快能在多少秒内引爆所有地雷?
### 输入格式
输入的第一行包含一个整数 $t$ ($1 \le t \le 10^4$)——测试数据的组数。
每一组测试数据前都有一个空行。
接下来一行包含两个整数 $n,k(1 \le n \le 2 \cdot 10^5 ,0 \le k \le 10^9)$——地雷的数量和爆炸的范围。
接下来 $n$ 行,其中第 $i$ 行包含第 $i$ 颗地雷的 $x$ 和 $y$ 坐标,以及它爆炸的时间$(-10^9 \le x, y \le 10 ^9,0 \le timer \le 10^9)$。保证所有地雷的坐标都不同。
保证所有测试数据的 $n$ 之和不超过 $2 \cdot 10^5$。
### 输出格式
共 $t$ 行,每行分别表示对应输入数据集合的答案——引爆所有地雷所需的最小时间。
$\\$
By 御坂10029号$\\$2022/01/29
题目描述
Polycarp is very fond of playing the game Minesweeper. Recently he found a similar game and there are such rules.
There are mines on the field, for each the coordinates of its location are known ( $ x_i, y_i $ ). Each mine has a lifetime in seconds, after which it will explode. After the explosion, the mine also detonates all mines vertically and horizontally at a distance of $ k $ (two perpendicular lines). As a result, we get an explosion on the field in the form of a "plus" symbol ('+'). Thus, one explosion can cause new explosions, and so on.
Also, Polycarp can detonate anyone mine every second, starting from zero seconds. After that, a chain reaction of explosions also takes place. Mines explode instantly and also instantly detonate other mines according to the rules described above.
Polycarp wants to set a new record and asks you to help him calculate in what minimum number of seconds all mines can be detonated.
输入输出格式
输入格式
The first line of the input contains an integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases in the test.
An empty line is written in front of each test suite.
Next comes a line that contains integers $ n $ and $ k $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 0 \le k \le 10^9 $ ) — the number of mines and the distance that hit by mines during the explosion, respectively.
Then $ n $ lines follow, the $ i $ -th of which describes the $ x $ and $ y $ coordinates of the $ i $ -th mine and the time until its explosion ( $ -10^9 \le x, y \le 10^9 $ , $ 0 \le timer \le 10^9 $ ). It is guaranteed that all mines have different coordinates.
It is guaranteed that the sum of the values $ n $ over all test cases in the test does not exceed $ 2 \cdot 10^5 $ .
输出格式
Print $ t $ lines, each of the lines must contain the answer to the corresponding set of input data — the minimum number of seconds it takes to explode all the mines.
输入输出样例
输入样例 #1
3
5 0
0 0 1
0 1 4
1 0 2
1 1 3
2 2 9
5 2
0 0 1
0 1 4
1 0 2
1 1 3
2 2 9
6 1
1 -1 3
0 -1 9
0 1 7
-1 0 1
-1 1 9
-1 -1 7
输出样例 #1
2
1
0
说明
![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1619G/711da0b83edef1ebd29a367a80a04b81ecd3a6be.png)Picture from examplesFirst example:
- $ 0 $ second: we explode a mine at the cell $ (2, 2) $ , it does not detonate any other mine since $ k=0 $ .
- $ 1 $ second: we explode the mine at the cell $ (0, 1) $ , and the mine at the cell $ (0, 0) $ explodes itself.
- $ 2 $ second: we explode the mine at the cell $ (1, 1) $ , and the mine at the cell $ (1, 0) $ explodes itself.
Second example:
- $ 0 $ second: we explode a mine at the cell $ (2, 2) $ we get:
![](https://espresso.codeforces.com/39eed3efcd5ca0bf2cac8262b2fc289bf89e1829.png)- $ 1 $ second: the mine at coordinate $ (0, 0) $ explodes and since $ k=2 $ the explosion detonates mines at the cells $ (0, 1) $ and $ (1, 0) $ , and their explosions detonate the mine at the cell $ (1, 1) $ and there are no mines left on the field.