Min Max Swap
题意翻译
### CF1631A Min Max Swap
给定两个长度为 $n$ 的数组 $a,b$。你可以执行若干次操作,每次操作你可以选择一个位置 $i$,并交换 $a_i,b_i$。你需要最小化 $\max\limits_{i=1}^n a_i\cdot\max\limits_{i=1}^n b_i$ 的值,求这个最小值。
数据范围:
- $t$ 组数据,$1\leqslant t\leqslant 100$。
- $1\leqslant n\leqslant 100$。
- $1\leqslant a_i,b_i\leqslant 10^4$。
Translated by Eason_AC
2022.1.28
题目描述
You are given two arrays $ a $ and $ b $ of $ n $ positive integers each. You can apply the following operation to them any number of times:
- Select an index $ i $ ( $ 1\leq i\leq n $ ) and swap $ a_i $ with $ b_i $ (i. e. $ a_i $ becomes $ b_i $ and vice versa).
Find the minimum possible value of $ \max(a_1, a_2, \ldots, a_n) \cdot \max(b_1, b_2, \ldots, b_n) $ you can get after applying such operation any number of times (possibly zero).
输入输出格式
输入格式
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 100 $ ) — the number of test cases. Description of the test cases follows.
The first line of each test case contains an integer $ n $ ( $ 1\le n\le 100 $ ) — the length of the arrays.
The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10\,000 $ ) where $ a_i $ is the $ i $ -th element of the array $ a $ .
The third line of each test case contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \le b_i \le 10\,000 $ ) where $ b_i $ is the $ i $ -th element of the array $ b $ .
输出格式
For each test case, print a single integer, the minimum possible value of $ \max(a_1, a_2, \ldots, a_n) \cdot \max(b_1, b_2, \ldots, b_n) $ you can get after applying such operation any number of times.
输入输出样例
输入样例 #1
3
6
1 2 6 5 1 2
3 4 3 2 2 5
3
3 3 3
3 3 3
2
1 2
2 1
输出样例 #1
18
9
2
说明
In the first test, you can apply the operations at indices $ 2 $ and $ 6 $ , then $ a = [1, 4, 6, 5, 1, 5] $ and $ b = [3, 2, 3, 2, 2, 2] $ , $ \max(1, 4, 6, 5, 1, 5) \cdot \max(3, 2, 3, 2, 2, 2) = 6 \cdot 3 = 18 $ .
In the second test, no matter how you apply the operations, $ a = [3, 3, 3] $ and $ b = [3, 3, 3] $ will always hold, so the answer is $ \max(3, 3, 3) \cdot \max(3, 3, 3) = 3 \cdot 3 = 9 $ .
In the third test, you can apply the operation at index $ 1 $ , then $ a = [2, 2] $ , $ b = [1, 1] $ , so the answer is $ \max(2, 2) \cdot \max(1, 1) = 2 \cdot 1 = 2 $ .