New Year Concert

题意翻译

给定一个长度为 $n$ 的数组 $a$,定义一次操作为修改任意一个数组中的元素。对于一个长度为 $k$ 的数组 $b$,定义 $f(b_1,b_2,\dots,b_k)$ 为使得对于所有的 $1\leqslant l\leqslant r\leqslant k$,都有 $\gcd\{b_l,b_{l+1},\dots,b_r\}\neq r-l+1$ 的最少操作次数。现在,请求出 $f(a_1),f(a_1,a_2),\dots,f(a_1,a_2,\dots,a_n)$ 的值。 数据范围: - $1\leqslant n\leqslant 2\times 10^5$。 - $1\leqslant a_i\leqslant 10^9$。 Translated by Eason_AC 2022.1.31

题目描述

New Year is just around the corner, which means that in School 179, preparations for the concert are in full swing. There are $ n $ classes in the school, numbered from $ 1 $ to $ n $ , the $ i $ -th class has prepared a scene of length $ a_i $ minutes. As the main one responsible for holding the concert, Idnar knows that if a concert has $ k $ scenes of lengths $ b_1 $ , $ b_2 $ , $ \ldots $ , $ b_k $ minutes, then the audience will get bored if there exist two integers $ l $ and $ r $ such that $ 1 \le l \le r \le k $ and $ \gcd(b_l, b_{l + 1}, \ldots, b_{r - 1}, b_r) = r - l + 1 $ , where $ \gcd(b_l, b_{l + 1}, \ldots, b_{r - 1}, b_r) $ is equal to the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of the numbers $ b_l $ , $ b_{l + 1} $ , $ \ldots $ , $ b_{r - 1} $ , $ b_r $ . To avoid boring the audience, Idnar can ask any number of times (possibly zero) for the $ t $ -th class ( $ 1 \le t \le k $ ) to make a new scene $ d $ minutes in length, where $ d $ can be any positive integer. Thus, after this operation, $ b_t $ is equal to $ d $ . Note that $ t $ and $ d $ can be different for each operation. For a sequence of scene lengths $ b_1 $ , $ b_2 $ , $ \ldots $ , $ b_{k} $ , let $ f(b) $ be the minimum number of classes Idnar has to ask to change their scene if he wants to avoid boring the audience. Idnar hasn't decided which scenes will be allowed for the concert, so he wants to know the value of $ f $ for each non-empty prefix of $ a $ . In other words, Idnar wants to know the values of $ f(a_1) $ , $ f(a_1 $ , $ a_2) $ , $ \ldots $ , $ f(a_1 $ , $ a_2 $ , $ \ldots $ , $ a_n) $ .

输入输出格式

输入格式


The first line contains a single integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the number of classes in the school. The second line contains $ n $ positive integers $ a_1 $ , $ a_2 $ , $ \ldots $ , $ a_n $ ( $ 1 \le a_i \le 10^9 $ ) — the lengths of the class scenes.

输出格式


Print a sequence of $ n $ integers in a single line — $ f(a_1) $ , $ f(a_1 $ , $ a_2) $ , $ \ldots $ , $ f(a_1 $ , $ a_2 $ , $ \ldots $ , $ a_n) $ .

输入输出样例

输入样例 #1

1
1

输出样例 #1

1

输入样例 #2

3
1 4 2

输出样例 #2

1 1 2

输入样例 #3

7
2 12 4 8 18 3 6

输出样例 #3

0 1 1 1 2 2 2

说明

In the first test we can change $ 1 $ to $ 2 $ , so the answer is $ 1 $ . In the second test: - $ [1] $ can be changed into $ [2] $ , - $ [1, 4] $ can be changed into $ [3, 4] $ , - $ [1, 4, 2] $ can be changed into $ [2, 3, 2] $ .