Sorting Parts

题意翻译

给定一个长度为 $n$ 的数组 $a$。你可以执行恰好一次操作。每次操作选择一个在 $[1,n-1]$ 内的整数 $len$,然后将数组 $a$ 中长度为 $len$ 的前缀和长度为 $n-len$ 的后缀**分别**排序。请判断是否能够通过操作,使得最终的数组 $a$ **不**满足 $\forall i\in[1,n)$,$a_i\leqslant a_{i+1}$。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 100$。 - $2\leqslant n,\sum n\leqslant 10^4$。 - $1\leqslant a_i\leqslant 10^9$。 Translated by Eason_AC

题目描述

You have an array $ a $ of length $ n $ . You can exactly once select an integer $ len $ between $ 1 $ and $ n - 1 $ inclusively, and then sort in non-decreasing order the prefix of the array of length $ len $ and the suffix of the array of length $ n - len $ independently. For example, if the array is $ a = [3, 1, 4, 5, 2] $ , and you choose $ len = 2 $ , then after that the array will be equal to $ [1, 3, 2, 4, 5] $ . Could it be that after performing this operation, the array will not be sorted in non-decreasing order?

输入输出格式

输入格式


There are several test cases in the input data. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 100 $ ) — the number of test cases. This is followed by the test cases description. The first line of each test case contains one integer $ n $ ( $ 2 \leq n \leq 10^4 $ ) — the length of the array. The second line of the test case contains a sequence of integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 10^9 $ ) — the array elements. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^4 $ .

输出格式


For each test case of input data, output "YES" (without quotes), if the array may be not sorted in non-decreasing order, output "NO" (without quotes) otherwise. You can output each letter in any case (uppercase or lowercase).

输入输出样例

输入样例 #1

3
3
2 2 1
4
3 1 2 1
5
1 2 2 4 4

输出样例 #1

YES
YES
NO

说明

In the first test case, it's possible to select $ len = 1 $ , then after operation, the array will not be sorted in non-decreasing order and will be equal to $ [2, 1, 2] $ . In the second test case, it's possible to select $ len = 3 $ , then after operation, the array will not be sorted in non-decreasing order and will be equal to $ [1, 2, 3, 1] $ . In the third test case, the array will be sorted in non-decreasing order for every possible $ len $ .