Anti-Fibonacci Permutation

题意翻译

定义一个 $1\sim k$ 的排列是**反斐波那契排列**,当且仅当 $\forall i\in[3,k]$,都有 $p_{i-2}+p_{i-1}\neq p_i$。 现在,给定一个整数 $n$,请输出任意 $n$ 个 $1\sim n$ 的反斐波那契排列。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 48$。 - $3\leqslant n\leqslant 50$。 Translated by Eason_AC

题目描述

Let's call a permutation $ p $ of length $ n $ anti-Fibonacci if the condition $ p_{i-2} + p_{i-1} \ne p_i $ holds for all $ i $ ( $ 3 \le i \le n $ ). Recall that the permutation is the array of length $ n $ which contains each integer from $ 1 $ to $ n $ exactly once. Your task is for a given number $ n $ print $ n $ distinct anti-Fibonacci permutations of length $ n $ .

输入输出格式

输入格式


The first line contains a single integer $ t $ ( $ 1 \le t \le 48 $ ) — the number of test cases. The single line of each test case contains a single integer $ n $ ( $ 3 \le n \le 50 $ ).

输出格式


For each test case, print $ n $ lines. Each line should contain an anti-Fibonacci permutation of length $ n $ . In each test case, you cannot print any permutation more than once. If there are multiple answers, print any of them. It can be shown that it is always possible to find $ n $ different anti-Fibonacci permutations of size $ n $ under the constraints of the problem.

输入输出样例

输入样例 #1

2
4
3

输出样例 #1

4 1 3 2
1 2 4 3
3 4 1 2
2 4 1 3
3 2 1
1 3 2
3 1 2