Unique Occurrences
题意翻译
- 给定一棵 $n$ 个节点的树,每条边有颜色 $c$ 。
- 求 $\sum_{u=1}^{n} \sum_{v=u+1}^{n} f(u,v)$ 。
- 其中 $f(u,v)$ 的意义是点 $u$ 到点 $v$ 的简单路径上**恰好出现一次**的颜色的数量。
- $n\in [2,5\cdot 10^5],c\in [1,n]$ 。
翻译者:蒟蒻君HJT
题目描述
You are given a tree, consisting of $ n $ vertices. Each edge has an integer value written on it.
Let $ f(v, u) $ be the number of values that appear exactly once on the edges of a simple path between vertices $ v $ and $ u $ .
Calculate the sum of $ f(v, u) $ over all pairs of vertices $ v $ and $ u $ such that $ 1 \le v < u \le n $ .
输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 2 \le n \le 5 \cdot 10^5 $ ) — the number of vertices in the tree.
Each of the next $ n-1 $ lines contains three integers $ v, u $ and $ x $ ( $ 1 \le v, u, x \le n $ ) — the description of an edge: the vertices it connects and the value written on it.
The given edges form a tree.
输出格式
Print a single integer — the sum of $ f(v, u) $ over all pairs of vertices $ v $ and $ u $ such that $ v < u $ .
输入输出样例
输入样例 #1
3
1 2 1
1 3 2
输出样例 #1
4
输入样例 #2
3
1 2 2
1 3 2
输出样例 #2
2
输入样例 #3
5
1 4 4
1 2 3
3 4 4
4 5 5
输出样例 #3
14
输入样例 #4
2
2 1 1
输出样例 #4
1
输入样例 #5
10
10 2 3
3 8 8
4 8 9
5 8 5
3 10 7
7 8 2
5 6 6
9 3 4
1 6 3
输出样例 #5
120