The Third Problem
题意翻译
给定一个 $0\sim n-1$ 的排列 $a$。定义 $0~n-1$ 的排列 $b$ 与 $a$ 相似,当且仅当 $\forall 1\le l\le r\le n$,有 $\operatorname{MEX}_{i=l}^r a_i=\operatorname{MEX}_{i=l}^r b_i$。求与 $a$ 相似的排列个数($\bmod (10^9+7)$)。
注:一个数列的 $\operatorname{MEX}$ 表示**没有出现在数列中的最小自然数**,如 $\operatorname{MEX}([1,2,3,4,5]) = 0$,$\operatorname{MEX}([0,1,2,4,5]) = 3$。
多测,$t\le10^4$,$1\le n,\sum n\le10^5$,$0\le a_i<n$。
Translated by @Sya_Resory
题目描述
You are given a permutation $ a_1,a_2,\ldots,a_n $ of integers from $ 0 $ to $ n - 1 $ . Your task is to find how many permutations $ b_1,b_2,\ldots,b_n $ are similar to permutation $ a $ .
Two permutations $ a $ and $ b $ of size $ n $ are considered similar if for all intervals $ [l,r] $ ( $ 1 \le l \le r \le n $ ), the following condition is satisfied: $ $$$\operatorname{MEX}([a_l,a_{l+1},\ldots,a_r])=\operatorname{MEX}([b_l,b_{l+1},\ldots,b_r]), $ $ where the $ \\operatorname{MEX} $ of a collection of integers $ c\_1,c\_2,\\ldots,c\_k $ is defined as the smallest non-negative integer $ x $ which does not occur in collection $ c $ . For example, $ \\operatorname{MEX}(\[1,2,3,4,5\])=0 $ , and $ \\operatorname{MEX}(\[0,1,2,4,5\])=3 $ .</p><p>Since the total number of such permutations can be very large, you will have to print its remainder modulo $ 10^9+7 $ .</p><p>In this problem, a permutation of size $ n $ is an array consisting of $ n $ distinct integers from $ 0 $ to $ n-1 $ in arbitrary order. For example, $ \[1,0,2,4,3\] $ is a permutation, while $ \[0,1,1\] $ is not, since $ 1 $ appears twice in the array. $ \[0,1,3\] $ is also not a permutation, since $ n=3 $ and there is a $ 3$$$ in the array.
输入输出格式
输入格式
Each test contains multiple test cases. The first line of input contains one integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The following lines contain the descriptions of the test cases.
The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the size of permutation $ a $ .
The second line of each test case contains $ n $ distinct integers $ a_1,a_2,\ldots,a_n $ ( $ 0 \le a_i \lt n $ ) — the elements of permutation $ a $ .
It is guaranteed that the sum of $ n $ across all test cases does not exceed $ 10^5 $ .
输出格式
For each test case, print a single integer, the number of permutations similar to permutation $ a $ , taken modulo $ 10^9+7 $ .
输入输出样例
输入样例 #1
5
5
4 0 3 2 1
1
0
4
0 1 2 3
6
1 2 4 0 5 3
8
1 3 7 2 5 0 6 4
输出样例 #1
2
1
1
4
72
说明
For the first test case, the only permutations similar to $ a=[4,0,3,2,1] $ are $ [4,0,3,2,1] $ and $ [4,0,2,3,1] $ .
For the second and third test cases, the given permutations are only similar to themselves.
For the fourth test case, there are $ 4 $ permutations similar to $ a=[1,2,4,0,5,3] $ :
- $ [1,2,4,0,5,3] $ ;
- $ [1,2,5,0,4,3] $ ;
- $ [1,4,2,0,5,3] $ ;
- $ [1,5,2,0,4,3] $ .