CF1706E Qpwoeirut and Vertices

Description

You are given a connected undirected graph with $ n $ vertices and $ m $ edges. Vertices of the graph are numbered by integers from $ 1 $ to $ n $ and edges of the graph are numbered by integers from $ 1 $ to $ m $ . Your task is to answer $ q $ queries, each consisting of two integers $ l $ and $ r $ . The answer to each query is the smallest non-negative integer $ k $ such that the following condition holds: - For all pairs of integers $ (a, b) $ such that $ l\le a\le b\le r $ , vertices $ a $ and $ b $ are reachable from one another using only the first $ k $ edges (that is, edges $ 1, 2, \ldots, k $ ).

Input Format

N/A

Output Format

N/A

Explanation/Hint

![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1706E/8251767c792df96adbc7d8ce1ae896aca10bb309.png)Graph from the first test case. The integer near the edge is its number.In the first test case, the graph contains $ 2 $ vertices and a single edge connecting vertices $ 1 $ and $ 2 $ . In the first query, $ l=1 $ and $ r=1 $ . It is possible to reach any vertex from itself, so the answer to this query is $ 0 $ . In the second query, $ l=1 $ and $ r=2 $ . Vertices $ 1 $ and $ 2 $ are reachable from one another using only the first edge, through the path $ 1 \longleftrightarrow 2 $ . It is impossible to reach vertex $ 2 $ from vertex $ 1 $ using only the first $ 0 $ edges. So, the answer to this query is $ 1 $ . ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1706E/af65cd675bd4523d08062174925e59fd8900ee43.png)Graph from the second test case. The integer near the edge is its number.In the second test case, the graph contains $ 5 $ vertices and $ 5 $ edges. In the first query, $ l=1 $ and $ r=4 $ . It is enough to use the first $ 3 $ edges to satisfy the condition from the statement: - Vertices $ 1 $ and $ 2 $ are reachable from one another through the path $ 1 \longleftrightarrow 2 $ (edge $ 1 $ ). - Vertices $ 1 $ and $ 3 $ are reachable from one another through the path $ 1 \longleftrightarrow 3 $ (edge $ 2 $ ). - Vertices $ 1 $ and $ 4 $ are reachable from one another through the path $ 1 \longleftrightarrow 2 \longleftrightarrow 4 $ (edges $ 1 $ and $ 3 $ ). - Vertices $ 2 $ and $ 3 $ are reachable from one another through the path $ 2 \longleftrightarrow 1 \longleftrightarrow 3 $ (edges $ 1 $ and $ 2 $ ). - Vertices $ 2 $ and $ 4 $ are reachable from one another through the path $ 2 \longleftrightarrow 4 $ (edge $ 3 $ ). - Vertices $ 3 $ and $ 4 $ are reachable from one another through the path $ 3 \longleftrightarrow 1 \longleftrightarrow 2 \longleftrightarrow 4 $ (edges $ 2 $ , $ 1 $ , and $ 3 $ ). If we use less than $ 3 $ of the first edges, then the condition won't be satisfied. For example, it is impossible to reach vertex $ 4 $ from vertex $ 1 $ using only the first $ 2 $ edges. So, the answer to this query is $ 3 $ . In the second query, $ l=3 $ and $ r=4 $ . Vertices $ 3 $ and $ 4 $ are reachable from one another through the path $ 3 \longleftrightarrow 1 \longleftrightarrow 2 \longleftrightarrow 4 $ (edges $ 2 $ , $ 1 $ , and $ 3 $ ). If we use any fewer of the first edges, nodes $ 3 $ and $ 4 $ will not be reachable from one another.