Empty Graph

题意翻译

给定一个长为 $n$ 的序列 $a$。 定义一个 $n$ 个点的无向完全图,点 $l$ 和点 $r$ 之间的距离为 $\min\limits_{i\in[l,r]}\{a_i\}$。 你可以进行 $k$ 次操作,每次操作可以选定 $\forall i \in [1,n]$ 并将 $a_i$ 赋值为一个 $[1,10^9]$ 的整数。请最大化这个图的直径。 设 $d(u,v)$ 表示 $u$ 到 $v$ 的最短路径长度,图的直径定义为 $\max\limits_{1\leq u < v \leq n} d(u,v)$。 输出最大化的直径长度。

题目描述

— Do you have a wish? — I want people to stop gifting each other arrays. O_o and Another Young Boy An array of $ n $ positive integers $ a_1,a_2,\ldots,a_n $ fell down on you from the skies, along with a positive integer $ k \le n $ . You can apply the following operation at most $ k $ times: - Choose an index $ 1 \le i \le n $ and an integer $ 1 \le x \le 10^9 $ . Then do $ a_i := x $ (assign $ x $ to $ a_i $ ). Then build a [complete](https://en.wikipedia.org/wiki/Complete_graph) undirected weighted graph with $ n $ vertices numbered with integers from $ 1 $ to $ n $ , where edge $ (l, r) $ ( $ 1 \le l < r \le n $ ) has weight $ \min(a_{l},a_{l+1},\ldots,a_{r}) $ . You have to find the maximum possible diameter of the resulting graph after performing at most $ k $ operations. The diameter of a graph is equal to $ \max\limits_{1 \le u < v \le n}{\operatorname{d}(u, v)} $ , where $ \operatorname{d}(u, v) $ is the length of the shortest path between vertex $ u $ and vertex $ v $ .

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ). Description of the test cases follows. The first line of each test case contains two integers $ n $ and $ k $ ( $ 2 \le n \le 10^5 $ , $ 1 \le k \le n $ ). The second line of each test case contains $ n $ positive integers $ a_1,a_2,\ldots,a_n $ ( $ 1 \le a_i \le 10^9 $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .

输出格式


For each test case print one integer — the maximum possible diameter of the graph after performing at most $ k $ operations.

输入输出样例

输入样例 #1

6
3 1
2 4 1
3 2
1 9 84
3 1
10 2 6
3 2
179 17 1000000000
2 1
5 9
2 2
4 2

输出样例 #1

4
168
10
1000000000
9
1000000000

说明

In the first test case, one of the optimal arrays is $ [2,4,5] $ . The graph built on this array: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1712D/6f5937a14546fd0344ab2a7ad56768b75a98a230.png) $ \operatorname{d}(1, 2) = \operatorname{d}(1, 3) = 2 $ and $ \operatorname{d}(2, 3) = 4 $ , so the diameter is equal to $ \max(2,2,4) = 4 $ .