CF1728C Digital Logarithm
Description
Let's define $ f(x) $ for a positive integer $ x $ as the length of the base-10 representation of $ x $ without leading zeros. I like to call it a digital logarithm. Similar to a digital root, if you are familiar with that.
You are given two arrays $ a $ and $ b $ , each containing $ n $ positive integers. In one operation, you do the following:
1. pick some integer $ i $ from $ 1 $ to $ n $ ;
2. assign either $ f(a_i) $ to $ a_i $ or $ f(b_i) $ to $ b_i $ .
Two arrays are considered similar to each other if you can rearrange the elements in both of them, so that they are equal (e. g. $ a_i = b_i $ for all $ i $ from $ 1 $ to $ n $ ).
What's the smallest number of operations required to make $ a $ and $ b $ similar to each other?
Input Format
N/A
Output Format
N/A
Explanation/Hint
In the first testcase, you can apply the digital logarithm to $ b_1 $ twice.
In the second testcase, the arrays are already similar to each other.
In the third testcase, you can first apply the digital logarithm to $ a_1 $ , then to $ b_2 $ .