CF1734E Rectangular Congruence
Description
You are given a prime number $ n $ , and an array of $ n $ integers $ b_1,b_2,\ldots, b_n $ , where $ 0 \leq b_i < n $ for each $ 1 \le i \leq n $ .
You have to find a matrix $ a $ of size $ n \times n $ such that all of the following requirements hold:
- $ 0 \le a_{i,j} < n $ for all $ 1 \le i, j \le n $ .
- $ a_{r_1, c_1} + a_{r_2, c_2} \not\equiv a_{r_1, c_2} + a_{r_2, c_1} \pmod n $ for all positive integers $ r_1 $ , $ r_2 $ , $ c_1 $ , and $ c_2 $ such that $ 1 \le r_1 < r_2 \le n $ and $ 1 \le c_1 < c_2 \le n $ .
- $ a_{i,i} = b_i $ for all $ 1 \le i \leq n $ .
Here $ x \not \equiv y \pmod m $ denotes that $ x $ and $ y $ give different remainders when divided by $ m $ .
If there are multiple solutions, output any. It can be shown that such a matrix always exists under the given constraints.
Input Format
N/A
Output Format
N/A
Explanation/Hint
In the first example, the answer is valid because all entries are non-negative integers less than $ n = 2 $ , and $ a_{1,1}+a_{2,2} \not\equiv a_{1,2}+a_{2,1} \pmod 2 $ (because $ a_{1,1}+a_{2,2} = 0 + 0 \equiv 0 \pmod 2 $ and $ a_{1,2}+a_{2,1} = 1 + 0 \equiv 1 \pmod 2 $ ). Moreover, the values on the main diagonals are equal to $ 0,0 $ as required.
In the second example, the answer is correct because all entries are non-negative integers less than $ n = 3 $ , and the second condition is satisfied for all quadruplets $ (r_1, r_2, c_1, c_2) $ . For example:
- When $ r_1=1 $ , $ r_2=2 $ , $ c_1=1 $ and $ c_2=2 $ , $ a_{1,1}+a_{2,2} \not\equiv a_{1,2}+a_{2,1} \pmod 3 $ because $ a_{1,1}+a_{2,2} = 1 + 1 \equiv 2 \pmod 3 $ and $ a_{1,2}+a_{2,1} = 2 + 1 \equiv 0 \pmod 3 $ .
- When $ r_1=2 $ , $ r_2=3 $ , $ c_1=1 $ , and $ c_2=3 $ , $ a_{2,1}+a_{3,3} \not\equiv a_{2,3}+a_{3,1} \pmod 3 $ because $ a_{2,1}+a_{3,3} = 1 + 1 \equiv 2 \pmod 3 $ and $ a_{2,3}+a_{3,1} = 0 + 1 \equiv 1 \pmod 3 $ .
Moreover, the values on the main diagonal are equal to $ 1,1,1 $ as required.