Segment Covering

题意翻译

给定 $ n $ 个区间 $ [x_i, y_i] $,保证所有区间均不同。令 $ f(l, r) $ 表示从 $ n $ 个区间中选择偶数个区间使得其求并集后恰为 $ [l, r] $ 的方案数,令 $ g(l, r) $ 表示从 $ n $ 个区间中选择奇数个区间使得其求并集后恰为 $ [l, r] $ 的方案数。给定 $ q $ 组询问 $ [l_i, r_i] $,输出 $ f(l_i, r_i) - g(l_i, r_i) $,对 $ 998244353 $ 取模。

题目描述

ChthollyNotaSeniorious gives DataStructures a number axis with $ m $ distinct segments on it. Let $ f(l,r) $ be the number of ways to choose an even number of segments such that the union of them is exactly $ [l,r] $ , and $ g(l,r) $ be the number of ways to choose an odd number of segments such that the union of them is exactly $ [l,r] $ . ChthollyNotaSeniorious asked DataStructures $ q $ questions. In each query, ChthollyNotaSeniorious will give DataStructures two numbers $ l, r $ , and now he wishes that you can help him find the value $ f(l,r)-g(l,r) $ modulo $ 998\,244\,353 $ so that he wouldn't let her down.

输入输出格式

输入格式


The first line of input contains two integers $ m $ ( $ 1 \leq m \leq 2 \cdot 10^5 $ ) and $ q $ ( $ 1 \leq q \leq 2 \cdot 10^5 $ ) — the number of segments and queries, correspondingly. The $ i $ -th of the next $ m $ lines contains two integers $ x_i $ and $ y_i $ ( $ 1 \leq x_i < y_i \leq 10^9 $ ), denoting a segment $ [x_i, y_i] $ . It is guaranteed that all segments are distinct. More formally, there do not exist two numbers $ i, j $ with $ 1 \le i < j \le m $ such that $ x_i = x_j $ and $ y_i = y_j $ . The $ i $ -th of the next $ q $ lines contains two integers $ l_i $ and $ r_i $ ( $ 1 \leq l_i < r_i \leq 10^9 $ ), describing a query.

输出格式


For each query, output a single integer — $ f(l_i,r_i)-g(l_i,r_i) $ modulo $ 998\,244\,353 $ .

输入输出样例

输入样例 #1

4 2
1 3
4 6
2 4
3 5
1 4
1 5

输出样例 #1

1
0

说明

In the first query, we have to find $ f(1, 4) - g(1, 4) $ . The only subset of segments with union $ [1, 4] $ is $ \{[1, 3], [2, 4]\} $ , so $ f(1, 4) = 1, g(1, 4) = 0 $ . In the second query, we have to find $ f(1, 5) - g(1, 5) $ . The only subsets of segments with union $ [1, 5] $ are $ \{[1, 3], [2, 4], [3, 5]\} $ and $ \{[1, 3], [3, 5]\} $ , so $ f(1, 5) = 1, g(1, 5) = 1 $ .