CF1777F Comfortably Numb
Description
You are given an array $ a $ consisting of $ n $ non-negative integers.
The numbness of a subarray $ a_l, a_{l+1}, \ldots, a_r $ (for arbitrary $ l \leq r $ ) is defined as $\max(a_l, a_{l+1}, \ldots, a_r) \oplus (a_l \oplus a_{l+1} \oplus \ldots \oplus a_r)$, where $\oplus$ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR).
Find the maximum numbness over all subarrays.
Input Format
N/A
Output Format
N/A
Explanation/Hint
For the first test case, for the subarray $ [3, 4, 5] $ , its maximum value is $ 5 $ . Hence, its numbness is $ 3 \oplus 4 \oplus 5 \oplus 5 $ = $ 7 $ . This is the maximum possible numbness in this array.
In the second test case the subarray $ [47, 52] $ provides the maximum numbness.